Benchtop-Einkristall Röntgendiffraktometer

Einkristall-Röntgendiffraktometer für die chemische Kristallographie

XtaLAB mini™ II

Benchtop-Strukturbestimmung kleiner Moleküle

Das Rigaku XtaLAB mini II Benchtop-Röntgenkristallographiesystem ist ein kompaktes Einkristall-Röntgendiffraktometer, das zur Produktion von veröffentlichungsreifen 3D-Strukturen entwickelt wurde. Als perfekte Ergänzung zu jedem synthetischen Chemielaboratorium vermag das XtaLAB mini II Ihre Forschungsproduktivität zu verbessern, indem preiswerte Sturturanalysefähigkeiten ganz ohne Bedarf externer Facheinrichtungen erbracht werden können. Mit dem XtaLAB mini II muss Ihre Forschungsgruppe zur Strukturbestimmung nicht mehr in langen Schlangen warten, sondern kann neue Verbindungen schnell analysieren.

Lehre der Röntgenbeugung mittels praktischer Erfahrung

In einer Vielzahl von Universitäten ist der Zugang zu Röntgendiffraktometern für Studenten oft nicht möglich aus Angst, dass das Instrument durch den Betrieb unerfahrener Nutzer beschädigt werden könnte. Das XtaLAB mini II liefert dabei die Möglichkeit für Studenten, die Einkristallanalyse mittels Diffraktometernutzung direkt zu erlernen. Dabei ist ein Diffraktometer kein Black Box Instrument. Vielmehr ermöglicht der wichtige Schritt der Kristallaufbringung auf den Goniometer und die technische Zentrierung des Kristalls in Position des Röntgenstrahls, dass Studenten die Wichtigkeit von Kristallaufbringungstechniken und Kristallauswahl lernen können. Das einfache Design des XtaLAB mini II minimiert zudem die Gefahr, dass die Studenten das System beschädigen könnten.

Reduzierte Größe bedeutet nicht, dass sich die Datenqualität auch reduziert

Das XtaLAB mini II von Rigaku ist ein Benchtop-Forschungsinstrument für die chemische Kristallographie. Keine Kompromisse der Datenqualität, keine längeren Datensammelzeiten. Die gelieferten Ergebnisse sind eindeutig. Die Lebenszeit der Röntgenröhre wird mittels 600 W Betrieb verlängert. Zur Kompensierung der niedrigeren Leistung, wird die SHINE Optik (speziell gekrümmter Monochromator) zur Produktion eines nutzbaren Röntgenflusses, vergleichbar mit dem eines Standard-Röntgensystems, genutzt.

Der Produktion veröffentlichungsreifer Strukturen gewidmet

Das Hauptaugenmerk bei der Entwicklung des XtaLAB mini II galt der Produktion veröffentlichungsreifer Strukturen in selbst den anspruchsvollsten Wissenschaftsjournalen. Der HPC Detektor wurde so positioniert, dass sich der maximale 2θ Wert ganz außerhalb der Anforderungen von Acta Cryst. befindet. Die Software liefert dabei all die Werkzeuge, die Sie zur Produktion veröffentlichungsreifer Daten mittels Bestimmung von 3D Strukturen von unterschiedlichen Strukturanalysepaketen benötigen.

Ask for more info

Features

  • Erschwingliches Design mit geringen Betriebskosten
  • Erfordert minimale Einarbeitung und Instandhaltung
  • Automatische Strukturbestimmungssoftware
  • Vermittelt einwandfreie Strukturinformationen
  • Ideale Ergänzung zum NMR-Spektrometer
  • Ausgezeichnetes Instrument für Selbstbedienungszwecke im Labor
  • Ideales Gerät für Unterrichtszwecke
  • Veröffenlichungsreife Ergebnisse
  • Keine speziellen Einrichtungen werden benötigt (110 VAC)
  • Optionales Kühlsystem verfügbar

XtaLAB mini™ II Spezifikationen

Voll leistungsfähiges, kompaktes Röntgenkristallographiesystem

  • Robustes, einfaches Design
  • Intuitive Software, ideal für wenig erfahrene Benutzer
  • Beispiellose Datenqualität - veröffentlichungsreife Strukturen übertreffen selbst Publikationsstandards der Internationalen Union für Kristallographie (IUCr)

Überall anschließbar
  • Normaler AC-Anschluss genügt - irgendwo auf der Welt
  • Geringer Platzbedarf - 560 mm (W) × 395 mm (D) × 674 mm (H) and ~ 100 kg Gewicht
  • Extrem sicheres Design - Austreten von Röntgenstrahlung unmöglich; Verschlussblende direkt an Geräteöffnung gekoppelt
Einfache Bedienung
  • Auto Modus macht es möglich, dass alle Schritte, von der Datenerfassung bis hin zum kompletten Strukturreport, mit nur einer Eingabe der chemischen Formel automatisch bearbeitet werden können
  • Automatische und intelligente Kristallraumgruppenbestimmung
  • Bewältigung von Kristallzwillingen
  • Numerische Absorptionskorrektur verfügbar
Außergewöhnlich gute Datenqualität
  • Neue SHINE Optik - mit konventionellen Systemen vergleichbare Datenqualität und Datenerfassung aber mit 1/4 des Strombedarfs (600 W) deutlich stromsparender
  • Mercury3 Detektor - Mercury CCD neu entwickelt für das XtaLAB mini II
  • Tieftemperatureinheit kompatibel und verfügbar

XtaLAB mini™ accessories

Oxford Cryostream 800

Whether 800 series, Plus or Compact, all Cryostream systems have the same unique mode of operation, allowing the systems to offer fast cool-down, high stability, low LN2 consumption and superior laminar flow. The new quiet pump is responsible for the gas flow from an unpressurised Dewar, through a flexible vacuum insulated transfer line, into the Cryostream coldhead. Once inside the coldhead, the liquid nitrogen passes through a heater, which evaporates most of the liquid into gas. This gas then flows outward along one path of the heat exchanger, through the temperature controller, to arrive at the pump at approximately 10 Kelvin below room temperature.

The flow rate of the gas from the pump is regulated by a variable flow controller. This gas flows back into the Cryostream coldhead where it is re-cooled along the second path of the heat exchanger.The gas temperature is regulated by a heater and sensor before entering the nozzle of the Cryostream, flowing along the isothermal nozzle and out over the sample.The temperature indicated on the Controller is a mapped temperature for the crystal position.

The default Cryostream gas flow rate is 5 L /minute, which equates to roughly 0.6 L of liquid nitrogen per hour.This means that a 60 litre Dewar will last for up to 4 days so can easily be run over a weekend without refilling. Turbo mode gives an increased flow rate of 10 L/minute if required.

Cryostream features
  • Best available temperature range of 80- 400 Kelvin as standard or 80-500 Kelvin in Plus model
  • Oxford Cryosystems superior laminar gas flow system; means significantly less icing than alternative systems
  • Proven stability in excess of 0.1 Kelvin
  • On-line and local data logging, monitoring and control
  • Fast cool-down to 100 Kelvin in just 20 minutes
  • Low & constant LN2 consumption means a 60 litre dewar can last up to 4 days*
  • Highly accurate mapping of temperature at crystal position
  • *At temperatures greater than 90 Kelvin, LN2 consumption may increase to 1.2 L/hour

CrysAlisPro v40

Now with full 64 bit compatibility!

Rigaku Oxford Diffraction single crystal X-ray diffractometers come complete with CrysAlisPro, our user-inspired data collection and data processing software for small molecule and protein crystallography. Designed around an easy-to-use graphical user interface, CrysAlisPro can be operated under fully automatic, semi-automatic or manual control.

CrysAlisPro logo

The latest release, CrysAlisPro v.40, is now fully 64 bit compatible and ready for the future. As modern diffractometers increase in performance and speed, your experiments generate bigger and bigger images and datasets. Additionally, supporting large detectors with very high pixel counts, such as those more commonly found at synchrotrons, requires large amounts of memory. Moving to 64 bit gives applications access to more memory, enabling the handling of these very large image sizes and data sets.

Expanded support for older Rigaku instrumentation and third party hardware is also in this release.

See below for other new software features that have recently been introduced.

How to get CrysAlisPro

The software is freely available for users of Rigaku Oxford Diffraction single crystal X-ray instruments and can be downloaded from our forum. Please register at http://www.rigakuxrayforum.com. Any queries related to the software may be answered on the forum.

CrysAlisPro: Seamless from start to finish

CrysAlisPro combines automated crystal screening, the fastest and most accurate strategy software available, concurrent data reduction and automatic small molecule structure solution. Visual feedback is provided for each step with clear, color-coded guidance so that both novices and experts can collect high-quality data in the shortest time possible.

CrysAlisPro is built on a command line interface and the GUI retains full manual control options for those that want them. It is your choice how to analyse your data.

CrysAlisPro processes data using sophisticated algorithms to provide the highest quality data. As technology or approaches change, our software team incorporates these to further advance data analysis and processing.

CrysAlisPro screen
Processing of challenging and non-standard data collections

CrysAlisPro Ewald3D

CrysAlisPro contains a comprehensive and highly effective range of tools for tackling a wide range of samples from easy to challenging, and non-standard crystal samples. For example, EwaldExplorer and Ewald 3D (NEW!) easily identify effects, problems or artifacts in difficult or problematic datasets.

Ewald3D allows visualization of measured reciprocal space in 3-dimensions and in an undistorted way. Identifying diffuse scatter, modulation, subtle twinning, or incorrect instrument models is quick and easy with this brand new feature.

Supporting a range of crystallographic setups and applications

In addition to standard data collection routines, CrysAlisPro contains tools for working with non-standard experimental setups and sample types, including:

  • High pressure data collections
  • Variable temperature and multi-wavelength experiments
  • Powder experiments (data collection and processing)
  • Automatic screening or full data collections of several in situ protein crystals
  • Highly absorbing samples
  • Up to 8-fold twinned samples
  • Charge density measurements
  • Absolute structure determination
Software Compatibility

Exporting frames or data from CrysAlisPro into suitable alternative formats such as mosFLM, XDS, Denzo (HKL 2000) or another Esperanto format is easily achieved. Use CrysAlisPro’s data collection strategy to achieve the best data coverage in the quickest possible time and then automatically output into HKLF format for small molecule datasets or into the MTZ format for protein datasets.

CrysAlisPro is used by numerous research groups to process their synchrotron data. Our software is capable of importing data from several different detector types; known or unknown.


AutoChem

AutoChem is the ultimate productivity tool for small molecule chemists, offering fast, fully automatic structure solution and refinement during data collection. Developed in collaboration with OlexSys Ltd (Durham University, UK), AutoChem works in conjunction with Olex2 where more advanced structure solution and refinement functionality exists. AutoChem is seamlessly integrated within CrysAlisPro, and forms an integral part of our ‘What is this?’ feature.

The ‘What is this?’ feature gives you structures in seconds and ensures you are not wasting time collecting full datasets on known samples or starting materials. It is an alternative pre-experiment option, which is used to plan your full data collections.

CrysAlisPro flow

Videos for the XtaLAB mini II X-ray diffractometer

Below are links to videos about the XtaLAB mini II single crystal X-ray diffractometer. The videos show the technology behind this benchtop single crystal X-ray diffractometer; how it is used in a University setting for teaching X-ray crystallography, and finally a guide to mounting your sample onto the X-ray diffractometer.

XtaLAB mini™ single crystal X-ray diffractometer applications

Fast complete structure

Molecule

 

Sample 4-aminobenzenesulfonamide
Formula C6H8N2O2S
Formula weight 172.20
Sample size 0.40 × 0.32 × 0.28 mm
Space group P21/c
Lattice constants a = 8.9963(6) Å
b = 9.013(5) Å
c = 10.053(6) Å
β = 111.529(8)°
V = 757.9(8) ų

Z = 4
Measurement time 2 hours 7 minutes
Rmerge 2.45 %
R1 3.21 %
For many applications: inorganic and organic materials

Molecule

 

Sample Potassium tetrachloroplatinate (II)
Formula K2PtCl4
Formula weight 610.19
Sample size 0.18 × 0.18 × 0.18 mm
Space group P4/mmm
Lattice constants a = 6.995(10) Å
c = 4.131(6) Å
V = 202.1(5) ų
Z = 16

Measurement time

1 hour 27 minutes

Rmerge

2.91 %
R1 1.731 %
Suitable for short and long unit cell axes

Molecule

 

Sample Raffinose
Formula C18H32O16·5H2O
Formula weight 594.52
Sample size 0.25 × 0.13 × 0.12 mm
Space group P212121
Lattice constants a = 8.99700(6) Å
b = 12.3300(9) Å
c = 23.8100(17) Å
V = 2633.4(3) ų
Z = 4
Measurement time 5 hours 30 minutes
Rmerge 6.74 %
R1 4.29 %

XtaLAB mini single crystal X-ray diffractometer publications

  1. Venkatesha R. Hathwar, Tejender S. Thakur, Tayur N. Guru Row, and Gautam R. Desiraju. "Transferability of Multipole Charge Density Parameters for Supramolecular Synthons: A New Tool for Quantitative Crystal Engineering." 2011, Cryst. Growth Des., 11 (2), pp. 616–623.
  2. Ritesh Dubey and Gautam R. Desiraju. Exploring the Crystal Structure Landscape with a Heterosynthon Module: Fluorobenzoic Acid:1,2-Bis(4-pyridyl)ethylene 2:1 Cocrystals." 2015,
    Cryst. Growth Des., 15(1), pp. 489–496.
  3. Arijit Mukherjee and Gautam R. Desiraju. "Halogen Bonding and Structural Modularity in 2,3,4- and 3,4,5-Trichlorophenol." 2011, Cryst. Growth Des., 11(9), pp. 3735–3739.
  4. Srinu Tothadi, Palash Sanphui, and Gautam R. Desiraju. "Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds." 2014, Cryst. Growth Des., 14(10), pp. 5293–5302.
  5. Srinu Tothadi, Sumy Joseph, and Gautam R. Desiraju. "Synthon Modularity in Cocrystals of 4-Bromobenzamide with n-Alkanedicarboxylic Acids: Type I and Type II Halogen···Halogen Interactions." 2013, Cryst. Growth Des., 13(7), pp. 3242–3254.
  6. Srinu Tothadi and Gautam R. Desiraju. "Synthon Modularity in 4-Hydroxybenzamide–Dicarboxylic Acid Cocrystals." 2012, Cryst. Growth Des., 12(12), pp. 6188–6198.
  7. Srinu Tothadi and Gautam R. Desiraju. "Designing ternary cocrystals with hydrogen bonds and halogen bonds." 2013, Chem. Commun., 49, pp. 7791-7793.
  8. Arijit Mukherjee and Gautam R. Desiraju. "Combinatorial Exploration of the Structural Landscape of Acid–Pyridine Cocrystals." 2014, Cryst. Growth Des., 14(3), pp. 1375–1385.
  9. Yutaka Ishida and Hiroyuki Kawaguchi. "Methylene-Linked Anilide—Bis(aryloxide) Ligands: Lithium, Sodium, Potassium, Chromium(III), and Vanadium(III) Ligation." 2014, Inorg. Chem., 53(13), pp. 6775–6787.
  10. Yutaka Ishida and Hiroyuki Kawaguchi. Nitrogen Atom Transfer from a Dinitrogen-Derived Vanadium Nitride Complex to Carbon Monoxide and Isocyanide." 2014, J. Am. Chem. Soc., 136(49), pp. 16990–16993.
  11. A. Mukherjee, K. Dixit, S. P. Sarma and G. R. Desiraju. "Aniline-phenol recognition: from solution through supramolecular synthons to cocrystals." 2014, IUCrJ, 1, pp. 228-239.
  12. A. Mukherjee and G. R. Desiraju. "Halogen bonds in some dihalogenated phenols: applications to crystal engineering." 2014, IUCrJ, 1, pp. 49-60.
  13. D. E. Janzen, A. M. Kooyman and K. A. Lange. "Crystal structures of bis[2-(di-phenylphosphinothioyl)phenyl] ether and bis{2-[diphenyl(selanylidene)phosphan-yl]phenyl} ether." 2014, Acta Cryst., E70, pp. 536-540.
  14. Eagle, C. T., Kpogo, K. K., Zink, L. C. and Smith, A. E. "Tetrakis[ -N-(2,4,6-trimethylphenyl)acetamidato]-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2012, Acta Cryst., E68, m877.
  15. Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. and Janzen, D.
    E."trans-Acetyldicarbonyl(η5-cyclopentadienyl)[tris(furan-2-yl)phosphane-κP] molybdenum(II)." 2013, Acta Cryst., E69, m475-m476.
  16. Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. ans Janzen, D. E.
    "trans-Acetyldicarbonyl(η5-cyclopentadienyl)(methyldiphenylphosphane) molybdenum(II)." 2012, Acta Cryst., E68, m1158-m1159.
  17. Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. and Janzen, D. E. "Crystal structures of
    trans-acetyldicarbonyl(η5-cyclopentadienyl)(dimethylphenylphosphane)molybdenum(II) and
    trans-acetyl-dicarbonyl(η5-cyclopentadienyl)(ethyldiphenylphosphane)molybdenum(II)." 2014, Acta Cryst., E70, 216-220.
  18. Sanphui, P. and Rajput, L. "Tuning solubility and stability of hydrochlorothiazide co-crystals." 2014, Acta Cryst., B70, 81-90.
  19. Eagle, C. T., Quarshie, F., Ketron, M. E. and Atem-Tambe, N. "cis-Tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2013, Acta Cryst., E69, m329.
  20. Janzen, D. E., Crepeau, L. E., Hageseth, B. D. and Wollack, J. W. "Bis(2-nitrophen-yl)methane." 2014, Acta Cryst., E70, o859.
  21. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Quarshie, F. "(3-Methyl-benzonitrile-κN)tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II)(Rh-Rh)." 2013, Acta Cryst., E69, m639.
  22. Eagle, C. T., Quarshie, F. and Cook, K. M. "(3-Methylbenzonitrile-1 N)-cis-tetrakis(μ-N-phenylacetamidato)-1:2κ4N:O;1:2κ4O:N-dirhodium(II)(Rh-Rh)." 2014, Acta Cryst., E70, m304.
  23. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Cook, K. M. "Crystal structure of
    tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(2-methylbenzonitrile-κN)rhodium(II)](Rh-Rh)." 2014, Acta Cryst., E70, m333-m334.
  24. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "1-Phenylpiperazine-1,4-diium tetrachloridocobalt(II)." 2014, Acta Cryst., E70, m139.
  25. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Trichlorido(1-ethyl-piperazin-1-ium)cobalt(II)." 2014, Acta Cryst., E70, m166.
  26. Mathlouthi, M., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Crystal structure of 2,5-dimethylanilinium hydrogen maleate." 2014, Acta Cryst., E70, o1183-o1184.
  27. Tothadi, S. and Desiraju, G. R. "4-Hydroxybenzamide 1,4-dioxane hemisolvate." 2012, Acta Cryst., E68, o2661.
  28. Okoro, C. O., Siddiquee, T. and Fadeyi, O. O. "5,7-Dibromo-3-trifluoromethyl-3,4-dihydroacridin-1(2H)-one." 2011, Acta Cryst., E67, o2052.
  29. Rahman, M. A., Karim, M., Arifuzzaman, M., Siddiquee, T. & Daniels, L. M. "2,9-Bis(5-sulfanylidene-4,5-dihydro-1,3,4-oxadiazol-2-yl)-1,10-phenanthroline dimethyl sulfoxide disolvate." 2014, Acta Cryst., E70, o321-o322.
  30. Mapp, L. and Coles, S. "Delivering practical crystallography experience to undergraduate students." 2014, Acta Cryst., A70, C1276.
  31. Frederick P. Malan, Eric Singleton and Reinout Meijboom. "Crystal structure of bis(phenylethynyl)tetrakis(dimethylphenylphosphine)ruthenium(II), C48H54P4Ru." 2014, Z. Kristallogr., NCS 229, pp. 255-257.
  32. Srinu Tothadi and Gautam R. Desiraju. "Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering." Phil. Trans. R. Soc. A, 2012, 370, pp. 2900–2915.
  33. Daron E. Janzen and Kent R. Mann. "Red and Orange Polymorphs of [Pt(terpy)Cl]Cl·2H2O." 2013, J. Chem. Crystallogr., 43(6), pp. 292-298.
  34. Sunil Varughese, Shashi Bhushan Sinha and Gautam R. Desiraju. "Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design."
    2011, Science China Chemistry, 54(12), pp. 1909-1919.
  35. Aya Sakon and Hidehiro Uekusa. "Supramolecular Structure of 5-Hydroxyisophtalic Acid-Ethanol 2:1 Solvate." 2012, X-ray Structure Analysis Online, 28, pp. 35-36.
  36. Srinu Tothadi, Balakrishna R. Bhogala, Asha R. Gorantla, Tejender S. Thakur, Ram K. R. Jetti and Gautam R. Desiraju. "Triclabendazole: An Intriguing Case of Co-existence of Conformational and Tautomeric Polymorphism." 2012, Chemistry – An Asian Journal, 7(2), pp. 330–342.
  37. Abdur R Miah, Jagodish C Sarker, Subas Rajbangshi, Shariff E Kabir, Shishir Ghosh and Tasneem A Siddiquee. "Synthesis and characterization of tungsten carbonyl complexes containing thioamides." 2012, Ind. J. Chem., 53A, pp. 274-280.
  38. Jun Zhao, Dong-Sheng Li, Ya-Pan Wu, Wen-Wen Dong, Liang Bai and Jack Y. Lu. "Structural diversity and properties of six coordination polymers derived from 1,2/1,3-phenylenedioxydiacetic acids and varied N-donor co-ligands." 2104, Inorg. Chim. Acta, 413, pp. 6-15.
  39. Tejender S. Thakur, Yasser Azim, Tothani Srinu and Gautam R. Desiraju. "N-H···O and C-H···O interaction mimicry in the 1:1 molecular complexes of 5,5’-diethylbarbituric acid with urea and acetamide." 2010, Current Science, 98(6), pp. 793-802.
  40. Daron E. Janzen and Arianna M. Kooyman. "Gold(III) Assisted C-H activation of 1,4,7-trithiacyclonone: Synthesis and Spontaneous Resolution of a Bicyclic Chiral Sulfonium Salt." 2104,
    Dalton Trans., 43, pp. 3424-3427.
  41. Malay Patra, Klaus Merz and Nils Metzler Nolte. "Planar Chiral (η6-arene)Cr(CO)3 Containing Carboxylic Acid Derivatives: Synthesis and Use in the Preparation of Organometallic Analogues of the Antibiotic Platensimycin." 2012, Dalton Trans., 41, pp. 112-117.
  42. Mohammad Arifuzzaman, Tasneem A. Siddiquee, Mohammad R. Karim, Aminul H. Mirza, Mohamad A. Ali. "Synthesis and Structure of Dimeric Copper (I) Complex from Bis[(2,2’)-dimethyl 2,2’-(1,10-phenanthroline-2,9-diyl) bis(methan-1-yl-1-ylidene)-bis(hydrazinecarbodithioate)]." 2013, Crystal Structure Theory and Applications, 2, pp. 159-166
  43. Pawel Grobelny, Arijit Mukherjee and Gautam R. Desiraju. "Polymorphs and hydrates of Etoricoxil, a selective COX-2 inhibitor." 2012, CrystEngComm, 14, pp. 5785-5794.
  44. Srinu Tothadi. "Polymorphism in cocrystals of urea:4,4′-bipyridine and salicylic acid:4,4′-bipyridine." 2014, CrystEngComm., 16, pp. 7587-7597.
  45. Arijit Mukherjee, Srinu Tothadi, Shaunak Chakraborty, Somnath Ganguly and Gautam R. Desiraju. "Synthon identification in co-crystals and polymorphs with IR spectroscopy. Primary amides as a case study." 2013, CrystEngComm., 15, pp.4640-4654.
  46. M.A. Guino-o, M. J. Folstad and D. E. Janzen "Crystal structures of 2,6-bis[(1H-1,2,4-triazol-1-yl)methyl]pyridine and 1,1-[pyridine-2,6-diylbis(methylene)]bis(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide." 2015, Acta Cryst., E71, pp. 128-132.
  47. Lalit Rajput, Palash Sanphui, and Gautam R. Desiraju. "New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals and Solubility." 2013, Cryst. Growth Des., 13(8), pp. 3681-3690.
  48. K. A. Siddiqui. "C–H···Onitrate synthon assisted molecular assembly of hydrogen bonded Ni(II) and Cu(II) complexes." 2013, J. Coord. Chem., pp. 2039-2050.
  49. Hoong-Kun Fun, Ching Kheng Quah, Prakash S. Nayak, B. Narayana and B. K. Sarojini. "N-(2-Bromophenyl)-2-(naphthalen-1-yl)acetamide." 2012, Acta Cryst. E71, o2657.
  50. Arijit Mukherjee, Pawel Grobelny, Tejender S. Thakur and Gautam R. Desiraju. "Polymorphs, Pseudopolymorphs and Co-Crystals of Orcinol: Exploring the Structural Landscape with High Throughput Crystallography." 2011, Cryst. Growth Des., 11, pp. 2637-2653.
  51. Eon S. Burkett and Tasneem A. Siddiquee. "Coordination Nature of 4-Mercaptoaniline to Sn(II) Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV) Complex." 2014, Inorganics, 2(4), pp. 652-659.
  52. Srinu Tothadi, Arijit Mukherjee and Gautam R. Desiraju. "Shape and size mimicry in the design of ternary molecular solids: Towards a robust strategy for crystal engineering." 2011,
    Chem. Commun., 47, pp. 12080-12082.
  53. Jagodish C. Sarkar, Md. Saifur Rahman, Shariff E. Kabir and Tasneem A. Siddiquee. "X-Ray crystal structure of [(μ-H)Os2(CO)4(SnPh3)2(μ-HSnPh2)(μ-dppf)] (dppf= 1,1'́-bis(diphenylphosphino)ferrocene." 2014, Journal of Bangladesh Academy of Sciences, 38(1), pp. 97-101.
  54. Akira Miura, Masanori Nagao, Takahiro Takei, Satoshi Watauchi, Isao Tanaka and Nobuhiro Kumada. "Crystal structures of LaO1-xFxBiS2(x ~ 0.23, 0.46): effect of F doping on distortion of Bi–S plane." 2014, J. Solid State Chem., 212, pp. 213-217.
  55. Daron E. Janzen and Kent R. Mann. "Heteroleptic platinum(II) isocyanide complexes: convenient synthetic access, polymorphs, and vapoluminescence." 2015, Dalton Trans., Advanced Article.
  56. Manish Kumar Mishra, Upadrasta Ramamurty and Gautam R. Desiraju. "Solid Solution Hardening of Molecular Crystals: Tautomeric Polymorphs of Omeprazole." 2015, J. Am. Chem. Soc., Advanced Article.
    Artikel:
    (Drücken Sie die CTRL
    Taste um mehrere
    Gegenstände auszuwählen)
    Name (Vor- und Nachname):
    Firma:
    E-mail:
    Telefon: Durchwahl:
    Addresse:
    Stadt:
    Bundesland:
    Postleitzahl:
    Land:
    Zusätzliche Kommentare
     (keine URLs erlaubt)