Small angle X-ray scattering (SAXS) Kratky camera system

Protein solution structure determination


Rigaku's BioSAXS-2000 SAXS camera is designed specifically to meet the needs of the structural biologist. Based on a patented two-dimensional Kratky design, the BioSAXS-2000 takes up much less space than a conventional 3-pinhole camera but offers better flux characteristics. Best of all, the BioSAXS-2000 can be mounted on the open port of a Rigaku rotating anode X-ray generator, taking full advantage of existing infrastructure, or it can be mated to a Rigaku microfocus sealed tube X-ray source. The BioSAXS AUTO configuration incorporates two time-saving features: an Automatic Sample Changer for unattended overnight operation and an Automatic Analysis Pipeline based on the world standard ATSAS package from EMBL Hamburg.

No need to wait for beamtime at a synchrotron

The BioSAXS-2000 is equipped with the new OptiSAXS optic, a doubly focusing multilayer optic whose focus is at the detector. The OptiSAXS provides better than two fold improvement in flux compared to its predecessor resulting in higher brilliance at the sample position and data collection times in the range of minutes. Thus, the BioSAXS-2000 brings a beamline experience to home laboratory SAXS experiments.

Optional accessories

  • Automatic Sample Changer (ASC) with support for 8 or 96 samples. See Accessories tab for more details.
  • Automatic Analysis Pipeline (AAP) based on ATSAS, the world’s most popular SAXS analysis software developed at EMBL Hamburg. See Accessories tab for more details.


  • Easily installed on the open port of an existing generator or can be installed with your choice of X-ray source: Microfocus sealed tube, MicroMax-007 HF, FR-X
  • Point focusing optics eliminates smearing issues common to traditional Kratky cameras.
  • All system components are motorized for control from control computer
  • Photodiode beamstop for intensity measurements and sample absorption correction
  • Sample temperature control included with system
  • 2D Kratky collimation allows one to achieve low q measurements with no realignment
  • SAXSLab data collection and processing software

  • Incident Beam: OptiSAXS CMF focusing optic
  • Collimation: 2D Kratky (X stage and tilt, motorized)
  • Beam size at Sample: Variable Width x 1.5 mm²
  • Sample Stage: 3 capillaries (X, Y stage, motorized) with a flow cell option
  • Sample Volume: 20 – 30 μL
  • Sample Temperature Control
  • Beam Stop: PIN diode detector (motorized)
  • q-range: 0.006 Å⁻¹ - 0.6 Å⁻¹
  • Detector: Rigaku HyPix-3000 Hybrid Pixel Array Detector (pixel size: 100 μm, active area: 77.5 mm X 30.5 mm)

Because data collection is faster with the BioSAXS-2000, automated tools for sample mounting, data collection and data analysis become especially important. The BioSAXS AUTO package accomplishes each of those tasks with the Automated Sample Changer (ASC) for automatic sample loading and data collection, and the Automated Analysis Pipeline (AAP) for automatic data processing and analysis.

EZ Aligner

The EZ Aligner tool allows for safe and remote alignment for VariMax or OptiSAXS optics. As the name implies, the EZ Aligner makes optimization of beam intensities an easy task. Simply set up your pin diode and pinhole, then use the EZ Aligner remote to optimize the beam from a safe place outside the radiation enclosure. Each EZ Aligner remote produces a radio signal strong enough to penetrate enclosure material or from another room. The EZ Aligner kit includes a remote control that communicates to 4 motors attached to optic micrometers to adjust optic rotation and translation.

BioSAXS Automatic Sample Handling

The ASC provides unattended sample mounting and data collection for those labs who want to take advantage of the higher throughput capabilities offered by the BioSAXS-2000. The ASC supports samples supplied in 96-well plates or 0.2 mL PCR tube arrays and seamlessly integrates with the hardware and SAXSLab software control package. Solution samples can be foil-sealed to ensure that your samples won’t evaporate prior to data collection. The ASC also includes support for temperature controlled sample storage and for multiple cleaning solutions and cleaning protocols. New features include a data collection wizard for quick and easy setup for 96 samples, configurable custom washes and dual syringe speeds for reduced dead-time between samples, and an option to incorporate turbo pumps which pump three times faster than the standard pumps. In all, the feature set of the ASC offers the benefit of quick preparation for automated experiments and optimized parameters to increase sample throughput.

Automatic Data Analysis Pipeline

The AAP uses automated programs in the ATSAS 2.7 version to provide the following automatic analyses for each sample:

  • Automatic sample evaluation and aggregation identification
  • Automatic data averaging and analysis
  • Automatic Guinier plot generation and calculation of Rg and I(0)
  • Automatic Kratky plot generation
  • Automatic Porod volume and molecular weight (MW) calculation
  • Automatic P(r) calculation with report of real space Rg and Dmax
  • Automatic estimation of qmax from useful Shannon channels
  • Automatic MW calculation by the Volume of Correlation, Vc
  • Automatic envelope calculation, averaging and analysis
  • Automatic shape classification
  • PDF report generator and easy review of previous AAP runs

The AAP thus allows for quick evaluation of sample quality, with color-coded results so that you can easily identify well-behaving samples versus those that exhibit aggregation and concentration effects.


  • Inouye H, Houde D, Temel DB, Makowski L. "Utility of Solution X-ray Scattering for the Development of Antibody Biopharmaceuticals." J Pharma Sci. (2016) doi:
  • Miyashita S, Sagane Y, Suzuki T, Matsumoto T, Niwa K, Watanabe T. "Non-Toxic Proteins of the
    Botulinum Toxin Complex Exert In-vivo Toxicity." Scientific Reports (2016) 6:31043, doi: 10.1038/srep31043.
  • Wan LCK, Pillon MC, Thevakumaran N, Sun Y, Chakrabartty A, Guarné A, Kurinov I, Durocher D, Sicheri F. "Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis." Nucleic Acids Res. (2016) doi: 10.1093/nar/gkw542
  • Zorzini V, Mernik A, Lah J, Sterckx YGJ, De Jonge N, Garcia-Pino A, De Greve H, Versées W, Loris R. "Substrate Recognition and Activity Regulation of the Escherichia coli mRNA Endonuclease MazF." J Biol Chem (2016) 291, 10950-10960.
  • Goricanec D, Stehle R, Egloff P, Grigoriu S, Plückthun A, Wagner G, Hagn F. "Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding." PNAS (2016) 113 (26) E3629-E3638. doi: 10.1073/pnas.1604125113.
  • Stogios PJ, Cox G, Spanogiannopoulos P, Pillon MC, Waglechner N, Skarina T, Koteva K, Guarné A, Savchenko A, Wright GD. "Rifampin phosphotransferase is an unusual antibiotic resistance kinase." Nature Communications 7, Article number: 11343. doi: 10.1038/ncomms1134
  • Skoda D, Styskalik A, Moravec Z, Bezdicka P, Babiak M, Klementova M, Barnes CE, Pinkas J. "Novel non-hydrolytic templated sol–gel synthesis of mesoporous aluminosilicates and their use as aminolysis catalysts." RSC Adv. (2016), 6, 24273–84. doi: 10.1039/C5RA24563J.
  • Li Q, Mu Z, Zhao R, Dahal G, Viola RE, Liu T, Jin Q, Cu S. "Structural Insights into the Tetrameric State of Aspartate-β-semialdehyde Dehydrogenases from Fungal Species." Scientific Reports 6, Article number: 21067 (2016) doi:10.1038/srep21067.


  • Hirabayashi K, Yuda E, Tanaka N, Katayama S, Iwasaki K, Matsumoto T, Kurisu G, Outten FW, Fukuyama K, Takahashi Y, Wada K. "Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis." J. Biol. Chem. (2015) doi: 10.1074/jbc.M115.680934, First published online: October 15, 2015.
  • Pillon MC, Babu VMP, Randall JR, Cai J, Simmons LA, Sutton MD, Guarné A. "The sliding clamp tethers the endonuclease domain of MutL to DNA." Nucl. Acids Res. (2015) doi: 10.1093/nar/gkv918, First published online: September 17, 2015.
  • Zeqiraj E, Tian L, Piggott CA, Pillon MC, Duffy NM, Ceccarelli DF, Keszei AF, Lorenzen K, Kurinov I, Orlicky S, Gish GD, Heck AJ, Guarné A, Greenberg RA, Sicheri F. "Higher-Order Assembly of BRCC36-KIAA0157 Is Required for DUB Activity and Biological Function." Mol Cell. 2015 Sep 17;59(6):970-83. doi: 10.1016/j.molcel.2015.07.028. Epub 2015 Sep 3.
  • Abe H, Takekiyo T, Aono M, Kishimura H, Yoshimura Y, Hamaya N. "Polymorphs in room-temperature ionic liquids: Hierarchical structure, confined water and pressure-induced frustration." Journal of Molecular Liquids, online proof available 19 June 2015, doi:10.1016/j.molliq.2015.05.057.
  • Zebret S, Vögele E, Klumpler T and Hamacek J. "Designing artificial 3D helicates: unprecedented self-assembly of homo-octauclear tetrapods with Europium." Chemistry. 2015 Apr 27;21(18):6695-9.
  • Aria T, Kimata S, Mochizuki D, Hara K, Zako T, Odaka M, Yohda M, Arisaka F, Kanamaru S, Matsumoto T, Yajima S, Sato J, Kawasaki S, Niimura Y. "NADH oxidase and alkyl hydroperoxide reductase subunit C (peroxiredoxin) from Amphibacillus xylanus form an oligomeric assembly." FEBS Open Bio. 2015, 5:124-131
  • Soh YM, Bürmann F, Shin HC, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong MS, Durand-Diebold ML, Kim YG, Kim HM, Lee NK, Sato M, Oh BH, Gruber S. "Molecular basis for SMC rod formation and its dissolution upon DNA binding." Mol Cell. 2015 Jan 22;57(2):290-303
  • Watanabe-Matsui M, Matsumoto T,Matsui T, Ikeda-Saito M, Muto A, Murayama K, Igarashi K. "Heme binds to an intrinsically disordered region of Bach2 and alters its conformation." Arch Biochem Biophys. 2015 Jan 1. 565: 25-31
  • Skoda D, Styskalik A, Moravec Z, Bezdicka P, Pinkas J. "Templated non-hydrolytic synthesis of mesoporous zirconium silicates and their catalytic properties." J Mater Sci. 2015, 1-12
  • Criswell A, Mooers BH. "Structural Studies of a Double-Stranded RNA from Trypanosome RNA Editing by Small-Angle X-ray Scattering." Methods Mol Biol. (2015)1240:165-89
  • Sopoušek J, Zobač O, Buršík J, Roupcová P, Vykoukal V, Brož P, Pinkasab J, Vřešt'ál J. "Heat-induced spinodal decomposition of Ag–Cu nanoparticles." Phys Chem Chem Phys, (2015) 17:28277-28285, doi: 10.1039/C5CP00198F.


  • Asencio-Hernández J, Ruhlmann C, McEwen A, Eberling P, Nominé Y, Céraline J, Starck JP, Delsuc MA. "Reversible Amyloid Fiber Formation in the N Terminus of Androgen Receptor." Chembiochem. 2014 Sep 11. doi: 10.1002/cbic.201402420. [Epub ahead of print]
  • Cura V, Troffer-Charlier N, Wurtz JM, Bonnefond L, Cavarelli J. “Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site.” Acta Cryst. (2014). D70, 2401-2412
  • Sopoušek J, Pinkas J, Brož P, Buršík K, Vykoukal V, Škoda D, Stýskalík A, ZobaI O, Vrešt’ál J, Hrdlička A, Šimbera J. “Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment.” Journal Nanomaterials, Volume 2014, Article ID 638964, 13 pages
  • Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho YJ, Kern D. “Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2.” Elife. 2014 May 27;3:e02667
  • Sedláček V, Klumpler T, Marek J, Kučera I. “The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans.” PLoS One. 2014 May 9;9(5):e96262
  • Abe H, Takekiyo T, Shigemi M, Yoshimura Y, Tsuge S, Hanasaki T, Ohishi K, Takata S, Suzuki J. “Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering.” J Phys Chem Lett, 2014, 5(7): 1175-1180
  • Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, Thevakumaran N, Talukdar M, Pillon MC, Ceccarelli DF, Wan LC, Juang YC, Mao DY, Gaughan C, Brinton MA, Perelygin AA, Kourinov I, Guarné A, Silverman RH, Sicheri F. "Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity." Mol Cell. 2014 Jan 23;53(2):221-34.
  • Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Nishiyama N, Kataoka K. "Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor." ACS Nano. 2014 Jul 22;8(7):6724-38.
  • Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss C-M, Page R, Blackledge M, Muthuswamy SK, Peti W and Tonks N. "Targeting the disordered C terminus of PTP1B with an allosteric inhibitor." Nature Chem. Biol. 2014 10, 558–566
  • Hizukuri Y, Oda T, Tabata S, Tamura-Kawakami K, Oi R, Sato M, Takagi J, Akiyama Y, Nogi T. “A Structure-Based Model of Substrate Discrimination by a Noncanonical PDZ Tandem in the Intramembrane-Cleaving Protease RseP.” Structure 2014 22(2): 326-336


  • Bonsor DA, Weiss E, Iosub-Amir A, Reingewertz TH, Chen TW, Haas R, Friedler A, Fischer W, Sundberg EJ. “Characterization of the translocation-competent complex between the Helicobacter pylori oncogenic protein CagA and the accessory protein CagF.” J Biol Chem. 2013 Nov 15;288(46):32897-909
  • Sana B, Johnson E, Le Magueres P, Criswell A, Cascio D, Lim S. “The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties.” J Biol Chem. 2013 Nov 8;288(45):32663-72
  • Sagane Y, Hayashi S, Matsumoto T, Miyashita S, Inui K, Miyata K, Yajima S, Suzuki T, Hasegawa K, Yamano A, Nishikawa A, Ohyama T, Watanabe T, Niwa K. “Sugar-induced conformational change found in the HA-33/HA-17 trimer of the botulinum toxin complex.” Biochem Biophys Res Commun. 2013 Aug 30;438(3):483-487
  • Ohbayashi N, Matsumoto T, Shima H, Goto M, Watanabe K, Yamano A, Katoh Y, Igarashi K, Yamagata Y, Murayama K. “Solution Structure of Clostridial Collagenase H and Its Calcium-Dependent Global Conformation Change.” Biophysical Journal (2013), 104(7) 1538–1545
  • Garces AP, Watowich SJ. “Intrinsic Flexibility of West Nile Virus Protease in Solution Characterized Using Small-Angle X-ray Scattering.” Biochemistry, 2013 52 (39), pp 6856-6865
  • He Q, Shumate CK, White MA, Molineux IJ, and Yin YW. “Exonuclease of human DNA polymerase gamma disengages its strand displacement function.” Mitochondrion 13 (2013) 592-601
  • Cherry AL, Finta C, Karlstro M, Jin Q, Schwend T, Astorga-Wells J, Zubarev RA, Del Campo M, Criswell AR, de Sanctis D, Jovine L, and Toftga R. “Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation.” Acta Cryst. (2013). D69, 2563-2579
  • Polizzi SJ, Walsh RM , Le Magueres P, Criswell AR, and Wood ZA. “Human UDP-α-d-xylose Synthase Forms a Catalytically Important Tetramer That Has Not Been Observed in Crystal Structures.” Biochemistry, 2013, 52(22): 3888-3898
  • Edwards JS, Betts L, Frazier ML, Pollet RM, Kwong SM, Walton WG, Bellentine WK III, Huang JJ, Habibi S, Del Campo M, Meier JL, Dervan PB, Firth N, Redinbo MR. “Molecular basis of antibiotic multiresistance transfer in Staphylococcus aureus.” PNAS. 2013 Feb 19;110(8):2804-9


  • Sagane Y, Miyashita S, Miyata K, Matsumoto T, Inui K, Hayashi S, Suzuki T, Hasegawa K, Yajima S, Yamano A, Niwa K, Watanabe T. “Small-angle X-ray scattering reveals structural dynamics of the botulinum neurotoxin associating protein, nontoxic nonhemagglutinin.” Biochem Biophys Res Commun. 2012 Aug 24;425(2):256-260
  • Matsumoto T, Kinoshita T, Kirii Y, Tada T, Yamano A., “Crystal and solution structures disclose a putative transient state of mitogen-activated protein kinase kinase 4.” Biochem Biophys Res Commun. 2012 Aug 24;425(2):195-200
  • Takekiyo T, Yamazaki K, Yamaguchi E, Abe H, Yoshimura Y. “High Ionic Liquid Concentration-Induced Structural Change of Protein in Aqueous Solution: A Case Study of Lysozyme.” J Phys Chem B, 2012, 116(36): 11092-11097
  • Zheng J, Gay DC, Demeler B, White MA, and Keitinge-Clay AT. “Divergence of multimodular polyketide synthases revealed by a didomain structure” Nat Chem Biol 2012 July; 8(7): 615-621
If you are unable to view this video, click here to download it (338 MB).

Focuses and monochromatizes an X-ray beam for small angle X-ray scattering

Rigaku's OptiSAXS optic is the latest generation of Cofocal Max-Flux® (CMF) optic for the BioSAXS-2000 SAXS system configured with a Rigaku microfocus rotating anode generator. The long length of the OptiSAXS optic allows it to capture more of the X-ray beam from the microfocus generator resulting in higher flux. As a result, the OptiSAXS optic delivers an intense, monochromatic X-ray beam with greater than two-fold higher flux compared to its predecessor.


  • Graded, multilayer confocal optic with increased length for maximum beam intensity.
  • Double-bounce beam geometry for optimum beam purity
  • Designed to achieve maximum performance when coupled with Rigaku microfocus X-ray generators

(Hold down CTRL key
to select multiple items)

Name (first/last):
Phone: Ext:
Street address:
State/Province/Region: (use two-letter abbreviations for US)
Zip/Postal Code:
Additional comments
 (no URLs allowed)