Nano3DX theory

In the nano3DX, the magnification takes place in the detector using true microscope elements. This design places the sample close to a high-resolution detector, allowing for a near-parallel beam experiment. This means greater instrument stability and shorter data collection times providing the highest resolution of any X-ray microscope in its class.

The nano3DX design is a vast improvement over older implementations that use a small source and a long sample-to-detector distance. This geometric magnification requires a very small source and extreme stability to prevent smearing. Data acquisition times can be quite long because small sources are also low power.

The graph at the right shows the three primary anode materials available for use in the nano3DX: chromium, copper and molybdenum, and the effects they have on the experiment. As the energy of the X-ray radiation rises penetration increases but contrast for low atomic weight materials goes down. For bone and silicates, Mo is preferred but for carbon-containing materials, Cu or Cr is preferred. This flexibility is essential to obtaining high-quality, high-contrast images quickly.
XRM Theory