Difractómetro de rayos X con microfoco único o dual para todas sus necesidades de cristalografía

Un sistema rápido y ágil para el análisis en 3D de pequeña molécula/H2>

XtaLAB Synergy-S

Pensando en su éxito, hemos producido el difractómetro XtaLAB Synergy-S para la difracción de rayos X de monocristal. Con una combinación de componentes de punta y un software inspirado en el usuario; vinculados por medio de una arquitectura altamente paralelizada, el XtaLAB Synergy-S produce datos rápidos y precisos de una manera inteligente.

El sistema se basa en nuestra nueva serie de fuentes de microfoco PhotonJet-S. Esta tercera generación de fuentes ha sido diseñada para maximizar los fotones de rayos X en la muestra mediante el uso de una combinación de nuevas ópticas, nuevos tubos más duraderos, y un sistema de alineación mejorada. Los PhotonJets están disponibles en longitudes de onda Cu, Mo o Ag, ya sea en una configuración de fuente única o doble.

El nuevo goniómetro kappa ha sido completamente rediseñado para incorporar una mayor velocidad de motor y un brazo telescópico único de dos thetas para proporcionar una flexibilidad total en su experimento de difracción. El goniómetro es compatible con la más amplia variedad de detectores para satisfacer sus necesidades. CCD o HPC? Usted elije.

Beneficios:

  • Mejora significativa en la calidad y la velocidad de la recolección de datos sobre los anteriores sistemas de microfoco de tubo sellado.
  • Una distancia del detección más larga o más corta significa que se puede analizar una variedad más amplia de muestras con una precisión excepcional.
  • Mínimo tiempo de inactividad con tubo de rayos X de larga duración, compatible con diagnósticos y solución de problemas en línea.
ROD logo
Ask for more info

Features

  • Fuente de alto flujo y aumento de la velocidad del goniómetro para permitir experimentos más ágiles y rápidos.
  • Telescópico único de brazo dos thetas para llegar a distancias largas y cortas de cristal a detector.
  • Diseño de goniómetro kappa mejorado con posicionamiento simétrico 2θ.
  • Nueva fuente de alto flujo con tubos de rayos X de más larga duración.
  • Mecanismo de alineamiento óptico de rayos X mejorado para un fácil mantenimiento.
  • La más amplia variedad de detectores disponibles: HPC o CCD
  • Caja de diseño inspirado en el usuario para un mejor flujo de trabajo
  • Nueva iluminación de la caja y del cristal controlada electrónicamente.

This video shows the XtaLAB Synergy-S single crystal X-ray diffractometer in action. Watch the fast diffractometer race the Rigaku office coffee machine to obtain a the X-ray crystal structure; this system is fast!

If you are unable to view this video, click here to download it (392 MB).


HyPix-6000HE: Hybrid photon counting X-ray detector


hypix
Rigaku Oxford Diffraction now offers the HyPix-6000HE Hybrid Photon Counting (HPC) X-ray detector. Like all HPCs, the HyPix-6000HE offers direct X-ray photon counting, single pixel point spread function and extremely low noise. The HyPix-6000HE HPC offers a small pixel size of 100 microns, which allows you to better resolve reflections for long unit cells as well as improving reflection profile analysis. The HyPix-6000HE has a high frame rate of 100 Hz, as well as a unique Zero Dead Time mode providing the ultimate in error-free shutterless data collection.
    Detector   HyPix-6000HE
    Active area   77.5 mm x 80.0 mm
    Dynamic quantum efficiency (Cu-Kα) > 98%
    Dynamic range 31-bits
    Counting rate per pixel 1 x 10⁶ X-ray photons/sec
    Readout speed 0 ms in ZeroDeadTime mode
    Maximum frame rate 100 Hz
    Point-spread function 1 pixel
    Cooling Air-cooled
    Humidity control Not required
    Pixel size 100 μm x 100 μm


PILATUS3 R 200K: Low maintenance, direct photon counting X-ray detector


pilatus
The PILATUS3 R 200K is a hybrid photon counting (HPC) X-ray detector designed to achieve the best possible data quality for diffraction experiments. HPC detectors are direct-detection, single-photon counting devices that have essentially no noise and high sensitivity. Moreover, the high dynamic range excellent DQE characteristics for the PILATUS3 R 200K means that they it is well suited for accurately measuring weak reflections alongside very strong reflections - overload corrections and separate scans for weak and strong data are not necessary. The readout time for the PILATUS3 R 200K is 7 msec readout speed, making it capable of true shutterless data collection, thus removing errors associated with shutter open/close and goniometer start/stop events. HPC X-ray detectors have revolutionized the way data are collected at synchrotrons and the PILATUS3 R detectors bring those same capabilities to collect the best possible data at home.
Detector   PILATUS3 R 200K
Active area   83.8 mm x 70.0 mm
Sensor Reverse-biased silicon diode array
Dynamic quantum efficiency (Cu-Kα; Mo-Kα) > 98%; > 76%
Dynamic range 20-bits
Counting rate per pixel 2 x 10⁶ X-ray photons/sec
Readout speed 7 msec
Maximum frame rate 20 Hz
Point-spread function 1 pixel
Cooling Air-cooled
Humidity control Nitrogen or dry air flow
Pixel size 172 μm x 172 μm


PILATUS3 R 300K: Direct photon counting X-ray detector with larger active area


pilatus
The PILATUS3 R 300K is a hybrid photon counting (HPC) X-ray detector that is desirable by labs who desire the benefits offered by PILATUS detectors combined with 4-circle goniometers, but prefer a larger active area. HPC detectors are direct-detection, single-photon counting devices that have essentially no noise and high sensitivity. Moreover, the high dynamic range excellent DQE characteristics for the PILATUS3 R 300K means that they it is well suited for accurately measuring weak reflections alongside very strong reflections - overload corrections and separate scans for weak and strong data are not necessary. The readout time for the PILATUS3 R 300K is 7 msec readout speed, making it capable of true shutterless data collection, thus removing errors associated with shutter open/close and goniometer start/stop events. HPC X-ray detectors have revolutionized the way data are collected at synchrotrons and the PILATUS3 R detectors bring those same capabilities to collect the best possible data at home.
Detector   PILATUS3 R 300K
Active area   83.8 mm x 106.5 mm
Sensor Reverse-biased silicon diode array
Dynamic quantum efficiency (Cu-Kα; Mo-Kα) > 98%; > 76%
Dynamic range 20-bits
Counting rate per pixel 1 x 10⁷ X-ray photons/sec
Readout speed 7 msec
Maximum frame rate 20 Hz
Point-spread function 1 pixel
Cooling Water-cooled
Humidity control Nitrogen or dry air flow
Pixel size 172 μm x 172 μm

XtaLAB Synergy accessories

Description
Oxford Cryo 800

El Oxford Cryostream Cooler: La serie Cryostream 800 es el sistema de baja temperatura a base de nitrógeno líquido más resistente, eficiente y fácil de usar disponible hoy en día. Las características específicas incluyen un sistema de flujo laminar superior, es decir, prácticamente cero riesgo de formación de hielo, extremadamente silencioso y un sistema de inicio rápido que resulta en un tiempo de enfriamiento de 100K de sólo 20 minutos

Oxford Cryo 800

CrysAlisPro v40

Now with full 64 bit compatibility!

Rigaku Oxford Diffraction single crystal X-ray diffractometers come complete with CrysAlisPro, our user-inspired data collection and data processing software for small molecule and protein crystallography. Designed around an easy-to-use graphical user interface, CrysAlisPro can be operated under fully automatic, semi-automatic or manual control.

CrysAlisPro logo

The latest release, CrysAlisPro v.40, is now fully 64 bit compatible and ready for the future. As modern diffractometers increase in performance and speed, your experiments generate bigger and bigger images and datasets. Additionally, supporting large detectors with very high pixel counts, such as those more commonly found at synchrotrons, requires large amounts of memory. Moving to 64 bit gives applications access to more memory, enabling the handling of these very large image sizes and data sets.

Expanded support for older Rigaku instrumentation and third party hardware is also in this release.

See below for other new software features that have recently been introduced.

How to get CrysAlisPro

The software is freely available for users of Rigaku Oxford Diffraction single crystal X-ray instruments and can be downloaded from our forum. Please register at http://www.rigakuxrayforum.com. Any queries related to the software may be answered on the forum.

CrysAlisPro: Seamless from start to finish

CrysAlisPro combines automated crystal screening, the fastest and most accurate strategy software available, concurrent data reduction and automatic small molecule structure solution. Visual feedback is provided for each step with clear, color-coded guidance so that both novices and experts can collect high-quality data in the shortest time possible.

CrysAlisPro is built on a command line interface and the GUI retains full manual control options for those that want them. It is your choice how to analyse your data.

CrysAlisPro processes data using sophisticated algorithms to provide the highest quality data. As technology or approaches change, our software team incorporates these to further advance data analysis and processing.

CrysAlisPro screen
Processing of challenging and non-standard data collections

CrysAlisPro Ewald3D

CrysAlisPro contains a comprehensive and highly effective range of tools for tackling a wide range of samples from easy to challenging, and non-standard crystal samples. For example, EwaldExplorer and Ewald 3D (NEW!) easily identify effects, problems or artifacts in difficult or problematic datasets.

Ewald3D allows visualization of measured reciprocal space in 3-dimensions and in an undistorted way. Identifying diffuse scatter, modulation, subtle twinning, or incorrect instrument models is quick and easy with this brand new feature.

Supporting a range of crystallographic setups and applications

In addition to standard data collection routines, CrysAlisPro contains tools for working with non-standard experimental setups and sample types, including:

  • High pressure data collections
  • Variable temperature and multi-wavelength experiments
  • Powder experiments (data collection and processing)
  • Automatic screening or full data collections of several in situ protein crystals
  • Highly absorbing samples
  • Up to 8-fold twinned samples
  • Charge density measurements
  • Absolute structure determination
Software Compatibility

Exporting frames or data from CrysAlisPro into suitable alternative formats such as mosFLM, XDS, Denzo (HKL 2000) or another Esperanto format is easily achieved. Use CrysAlisPro’s data collection strategy to achieve the best data coverage in the quickest possible time and then automatically output into HKLF format for small molecule datasets or into the MTZ format for protein datasets.

CrysAlisPro is used by numerous research groups to process their synchrotron data. Our software is capable of importing data from several different detector types; known or unknown.


AutoChem

AutoChem is the ultimate productivity tool for small molecule chemists, offering fast, fully automatic structure solution and refinement during data collection. Developed in collaboration with OlexSys Ltd (Durham University, UK), AutoChem works in conjunction with Olex2 where more advanced structure solution and refinement functionality exists. AutoChem is seamlessly integrated within CrysAlisPro, and forms an integral part of our ‘What is this?’ feature.

The ‘What is this?’ feature gives you structures in seconds and ensures you are not wasting time collecting full datasets on known samples or starting materials. It is an alternative pre-experiment option, which is used to plan your full data collections.

CrysAlisPro flow

Papers published using the XtaLAB Synergy-S

  1. Molcanov K, Jelsch C, Landeros B, Hernández-Trujilo J, Wenger E, Stilinović V, Kojic-Prodic B, Escudero-Adán E C. “Partially covalent two-electron/multicentric bonding between semiquinone radicals.” Cryst. Growth Des. (2018), just accepted 16 Nov https://pubs.acs.org/doi/abs/10.1021/acs.cgd.8b01484
  2. Ogawa A, Oohora A, Hayashi T. “Synthesis and Characterization of meso-Substituted Cobalt Tetrahydrocorrin and Evaluation of its Electrocatalytic Behavior Toward CO2 Reduction and H2 Evolution.” Inorg. Chem. (2018) 57(23): 14644-14652 https://pubs.acs.org/doi/full/10.1021/acs.inorgchem.8b02333
  3. Yang Y, Zhang S-S, Zhao Q-Q, Wang X-P, Tung C-H, Sun D. “Construction of Crystalline One-Dimensional Infinite Argentophilic Silver Alkynyl Assemblies and their Luminescence Properties.” Eur. J. Inorg. Chem. (2018), just accepted 11 Nov https://onlinelibrary.wiley.com/doi/abs/10.1002/ejic.201800998
  4. Lipowska M, Klenc J, Taylor A T, Marzilli L G. “fac-99m Tc/Re-tricarbonyl complexes with tridendate aminocarboxyphosphonate ligands: suitability of the phosphonate group in chelate ligand design of new imaging agents.” Inorg. Chim. Acta (2019) 486: 529-537 https://www.sciencedirect.com/science/article/pii/S0020169318314464
  5. Gradstein F M, Waskowska A, Kopaevich L, Watkins D K, Friis H, Pérez Panera J. “Berriasian planktonic foraminifera and calcareous nannofossils from Crimea Mountains, with reference to microfossil evolution.” Swiss Journal of Palaeontology (2018), just accepted 22 Oct https://link.springer.com/content/pdf/10.1007%2Fs13358-018-0175-8.pdf
  6. Alexandropoulos D I, Alaimo A A, Sun D, Stamatatos T C. “A New {Dy5} Single-Molecule Magnetic Bearing the Schiff Base Ligand N-Naphthalidene-2-amino-5-chlorophenol.” Magnetochemistry (2018) 4(4): 48 https://doi.org/10.3390/magnetochemistry4040048
  7. Getmanenko Y A, Mullins C S, Nesterov V N, Lake S, Risko C, Johnston-Halperin E. “Magnetic ordering in a vanadium-organic coordination polymer using a pyrrolo[2,3-d:5,4-d’]bis(thiazole)-based ligand.” RSC Adv. (2018) 8: 36223-36232 https://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra05697h
  8. Worrell A, Sun D, Mayans J, Lampropoulous C, Escuer A, Stamatatos T C. “Oximato-Based Ligands in 3d/4f-Metal Cluster Chemistry: A Family of {Cu3Ln} Complexes with a “Propeller”-like Topology and Single-Molecule Magnetic Behavior.” Inorg. Chem. (2018) 57(21): 13944-13952 https://pubs.acs.org/doi/ipdf/10.1021/acs.inorgchem.8b02495
  9. VanGelder L E, Petel B E, Nachtigall O, Martinez G, Brennessel W W, Matson E M. “Organic Functionalization of Polyoxovanadate-alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries.” ChemSusChem (2018), just accepted 15 Oct https://onlinelibrary.wiley.com/doi/pdf/10.1002/cssc.201802029
  10. Tan Y S, Chun, H Z, Jotani M M, Tiekink E R T. “Steric control of supramolecular association in structures of Zn(S2COR)2 with N,N’-bis(pyridine-4ylmethyl)oxalamide.” Z. Kristallogr. Cryst. Mater. (2018), published 8 Oct https://doi.org/10.1515/zkri-2018-2120
  11. Pejić J, Vušak D, Szalontai G, Prugovečki B, Mrvoš-Sermek D, Matković-Čalogović D, Sabolović J. “Disorder at the Chiral Cα Center and Room Temperature Solid-State cis-trans Isomerization; Synthesis and Structural Characterization of Copper(II) Complexes with D-allo, L-Isoleucine.” Crys. Growth Des. (2018) 18(9): 5138-5154 https://pubs.acs.org/doi/abs/10.1021/acs.cgd.8b00589
  12. Siu J C, Sauer G S, Saha A, Macey R L, Fu N, Chauviré T, Lancaster K M, Lin S. “Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO-N3 Charge-Transfer Complex.” J. Am. Chem. Soc. (2018) 140(39): 12511-12520 https://pubs.acs.org/doi/10.1021/jacs.8b06744
  13. Kadassery K J, MacMillan S N, Lacy D C. “Biphosphine phenol and phenolate complexes of Mn (I): manganese(I) catalyzed Tishchenko reaction.” 2018 47: 12652-12655 https://pubs.rsc.org/en/content/articlelanding/2018/dt/c8dt02933d#!divAb...
  14. Stone I B, Jermaks J, MacMillan S N, Lambert T H. “The Hydrazine-O2 Redox Couple as a Platform for Organocatalytic Oxidation: Benzo[c]cinnoline-Catalyzed Oxidation of Alkyl Halides to Aldehydes.” Angew. Chem. Int. Ed. (2018) 57(38) https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201807134
  15. Meyer R L, Brennessel W W, Matson E M. “Synthesis of a gallium-functionalised polyoxovanadate-alkoxide cluster: Toward a general route for a heterometal installation.” Polyhedron (2018), 156: 303-311 https://www.sciencedirect.com/science/article/pii/S027753871830576X?via%...
  16. Ravat P, Šolomek T, Häussinger D, Blacque O, Juríček M. “Dimethylcethrene: A Chiroptical Diradicaloid Photswitch.” J. Am.. Chem Soc. (2018) 140: 10839 – 10847 https://pubs.acs.org/doi/pdf/10.1021/jacs.8b05465
  17. Shapiro J A, Morrison K R, Chodisetty S S, Musaev D G, Wuest W M. “Biologically Inspired Total Synthesis of Ulbactin F, an Iron-Binding Natural Product.” Org. Lett. (2018), 20(18): 5922-5926 https://pubs.acs.org/doi/abs/10.1021/acs.orglett.8b02599
  18. Zhao C, Schwartz T, Stöger B, White F J, Chen J, Ma D, Fröhlich J, Kautny P. “Controlling excimer formation in indolo[3,2,1-jk]carbazole/9H-carbazole based host materials for RGB PhOLEDs” J. Mat. Chem. C. (2018), 6: 9914-9924 https://pubs.rsc.org/en/content/articlepdf/2018/tc/c8tc03537g
  19. Movassaghi S, Leung E, Hanif M, Lee B Y T, Holtkamp H U, Tu J K Y, Söhnel T, Jamieson S M F, Hartinger C G. “A Bioactive L-Phenylalanine-Derived Arene in Miltitargeted Organoruthenium Compounds: Impact on the Antiproliferative Activity and Mode of Action” Inorg. Chem (2018) 57(14): 8521-8529 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b01187
  20. Su Y, Su H-F, Wang Z, Li Y, Schein S, Zhao Q, Wang X, Tung C-H, Sun D. “Three Silver Nests Capped by Thiolate/Phenylphosphonate.” Chemistry:A European Journal (2018), 24(56): 15096-15103 https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201803203
  21. Wu Y, Halat D M, Wei F, Binford T, Seymour I D, Gaultois M W, Shaker S, Wang J, Grey C P, Cheetham A K. “Mixed X-site formate-hypophosphite hybrid perovskites.” Chemistry: A European Journal (2018), 24(44): 11309-11313 https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201803061
  22. Morgan M T, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum A M, Sun F, Wu R, Forest C R, Fahrni C J. “Stabilization of aliphatic phosphines by auxillary phosphine sulfides offers zeptomolar affinity and unprecedented selectivity for probing biological Cu(II).” Angew. Chem (2018) 130(31): 9859-9863 https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201804072
  23. Scholl K, Dillashaw J, Timpy E, Lam Y, DeRatt L, Benton T R, Powell J P, Houk K N Morgan J M. “Quinine-Promoted, Enantioselective Boron-Tethered Diels-Alder Reaction by Anomeric Control of Transition-State Conformation.” J. Org Chem. (2018) 83: 5756-5765 https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b00938
  24. Akondi S M, Gangireddy P, Pickel T C, Liebeskind L S. “Aerobic, Diselenide-Catalyzed Redox Dehydration: Amides and Peptides.” Org. Lett. (2018) 20: 538-541 https://pubs.acs.org/doi/10.1021/acs.orglett.7b03620
  25. Cundari T R, Jacobs B P, MacMillan S N, Wolczanski P T. “Dispersion forces play a role in (Me2IPr)Fe(=NAd)R2 (Ad = adamantly; R=neoPe, 1-nor) insertions and Fe-R bond dissociation enthalpies (BDEs)” Dalton Transactions (2018) 6025-6030 http://pubs.rsc.org/en/Content/ArticleLanding/2018/DT/C7DT04145D#!divAbs...
  26. Vaccarello D N, O’Connor K S, Iacono P, Rose J M, Cherian A E, Coates G W. “Synthesis of Semicrystalline Plyolefin Materials: Precision Methyl Branching via Stereoretentive Chain Walking.” J. Am. Chem. Soc. (2018) 140(20): 6208-6211 https://pubs.acs.org/doi/10.1021/jacs.8b02963
  27. Molčanov K, Mou Z, Kertesz M, Kojić-Prodić B, Stalke D, Demeshko S, Šantić A, Stilinović. “Two-electron / multicenter – pancake bonding in π-stacked trimers in a salt of tetrachloroquinone anion.” Chemistry: A European Journal, (2018) 24(33): 8292-8297 https://onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201800672
  28. Milić J, Zalibera M, Talaat D, Nomrowski J, Trapp N, Ruhlmann L, Boudon C, Wenger O S, Savitsky A, Lubitz W, Diederich F. “Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.” Chemistry: A European Journal, (2017) 24(6): 1431-1440 https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201704788
  29. Haberland S, Finke A D, Kerisit N, Katan C, Trolez Y, Gawel P, Leito I, Lõkov M, Järviste R, Kaupmees K, Trapp N, Ruhlmann L, Boudon C, Himmel D, Diederich F. “Enhancement of Push-Pull Properties of Pentafulvene and Pentafulvene Derivatives by Protonation at Carbon.” Eur J. Org. Chem., (2018) 6:739-749 https://onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.201800039
  30. Hao W, Harenberg J H, Wu X, MacMilan S N, Lin S. “Diastereo- and Entatioselective Formal [3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed radical Redox Relay” J. Am. Chem. Soc. (2018) 140(10): 3514-3517 https://pubs.acs.org/doi/10.1021/jacs.7b13710
  31. Ye K-Y, Pombar G, Fu N, Sauer G S, Keresztes I, Lin S. “Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes.” J. Am. Chem. Soc. (2018) 140(7): 2438-2441 https://pubs.acs.org/doi/10.1021/jacs.7b13387
  32. Junker A K, Hill L R, Thompson A L, Faulkner S, Sørensen T J. “Shining light on the antenna chromophore in lanthanide based dyes.” Dalton Trans., (2018) 47: 4794-4803 http://dx.doi.org/10.1039/C7DT04788F
  33. Nievergelt P P, Babor M, Čejka J, Spingler B. “A high-throughput screening method for the nano-crystallization of salts of organic cations.” Chem. Sci., (2018) 9: 3716-3722 http://pubs.rsc.org/en/content/articlepdf/2018/sc/c8sc00783g. An additional news article is available at https://phys.org/news/2018-03-method-medication.html
  34. Sarkar K, Dastidar P. “Supramolecular hydrogel derived from a C3-symmetric boronic acid derivative for stimuli-responsive release of insulin and doxorubicin.” Langmuir (2018) 34(2): 685-692. http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b03326)
  35. Urgiles J, Nathan S R, MacMillan S N, Wilson J J. “Dinuclear nitrido-bridged ruthenium complexes bearing diimine ligands.” Dalton Trans. (2017) 46: 14256-14263. http://pubs.rsc.org/en/content/articlelanding/2017/dt/c7dt03085a#!divAbs...
  36. Hao W, Wu X, Sun J Z, Siu J C, MacMillan S, Lin S. “Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-Acylaziridines and Alkenes.” J. Am. Chem. Soc. (2017) 139 (35): 12141-12144. http://pubs.acs.org/doi/abs/10.1021/jacs.7b06723
  37. Phukkaphan N, Cruickshank D L, Murray K S, Phonsri W, Harding P, Harding D. J. “Hysteretic spin crossover driven by anion conformational change.” Chem. Comm. (2017) 53: 9801-9804. http://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc05998a#!divAbs...
  38. Riwar L-J, Trapp N, Kuhn B, Diederich F. “Substituent Effects in Parallel-Displaced π–π Stacking Interactions: Distance Matters.” Angew. Chem. Int. Ed. (2017) 56 (37): 11252-11257. http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201703744/full
  39. Diederich F, Trapp N, Wörle M. “Small Molecule Crystallography in the Laboratory of Organic Chemistry at ETH Zürich.” Israel Journal of Chemistry (2017) 57 (1-2): 39-54. http://onlinelibrary.wiley.com/doi/10.1002/ijch.201600030/full
  40. Gropp C, Husch T, Trapp N, Reiher M, Diederich F. “Dispersion and Halogen-Bonding Interactions: Binding of the Axial Conformers of Monohalo- and (±)-trans-1,2-Dihalocyclohexanes in Enantiopure Alleno-Acetylenic Cages.” J. Am. Chem. Soc. (2017) 139 (35): 12190-12200 http://pubs.acs.org/doi/pdf/10.1021/jacs.7b05461
    .

ELement ANalyzer

Elemental analysis attachment for single crystals

The ELement ANalyzer is a state-of-the-art attachment that allows us to obtain qualitative information on elements in a single crystal at the same time as X-ray diffraction data collection for a single crystal structural analysis. By measuring the X-ray fluorescence spectrum emitted during X-ray diffraction experiments with the ELement ANalyzer, it becomes possible to perform elemental analysis on a single grain of crystal. The ELement ANalyzer can be used for confirmation the presence of central metal(s) in a mononuclear or polynuclear complex or solvent in a crystal for small molecule X-ray crystallography. There is a broad range of possible applications of the ELement ANalyzer in scientific fields.
ELAL Figure 1

Determine the presence and type of central metal in a metal complex

ELAL Figure 2

Confirmation of counter ion exchange

ELAL Figure 3

Evaluation of heavy atom derivative

ELAL Figure 4

Producto(s):

(Mantenga presionada la
tecla CTRL para seleccionar
varios productos)

Nombre (primer/apellido):
Compañía:
Correo electrónico o email:
Teléfono: Ext:
Dirección:
Ciudad:
Estado/provincia/región: (use la abreviación de dos letras para EU ( US))
Código o zona postal:
País:
Comentarios adicionales
 (no se aceptan URLs)