Sistema de cristalografía química de sobremesa

Para la determinación en 3D de la estructura molecular de molécula pequeña

XtaLAB mini™ II

Determinación sobremesa de la estructura de molécula pequeña

El sistema de cristalografía de rayos X de sobremesa, Rigaku XtaLAB mini II, es un difractómetro compacto de rayos X de monocristal diseñado para producir estructuras 3D con calidad de publicación. Es el complemento perfecto para cualquier laboratorio de química sintética. El XtaLAB mini II mejorará la productividad de la investigación, ofreciendo la capacidad de un análisis de la estructura económico y sin la necesidad de depender de una facilidad. Con el XtaLAB Mini II, usted ya no tiene que esperar por su turno para determinar sus estructuras; sino que su grupo de investigación puede analizar rápidamente nuevos compuestos, a medida que se sintetizan en el laboratorio.

Enseñe la difracción a través de la experiencia práctica

En muchas universidades, el difractómetro de rayos X se considera fuera del alcance de los estudiantes debido al temor de daños al instrumento por los usuarios sin experiencia. El XtaLAB mini II le ofrece la oportunidad a los estudiantes de aprender el análisis de monocristal utilizando realmente un difractómetro. Este no es un instrumento caja negra. Más bien, el importante paso de montaje de un cristal en el goniómetro y su centreo físico en la posición del haz de rayos X, asegura que los estudiantes aprenden la importancia de las técnicas de montaje y de la selección de cristal. El diseño sencillo de XtaLAB Mini II reduce al mínimo el peligro de daños al sistema a manos de los estudiantes.

Su tamaño compacto no significa una disminución en la calidad de los datos.

El Rigaku XtaLAB mini II es un instrumento de cristalografía química de grado de investigación que se coloca sobre la mesa de trabajo. Sin compromisos en la calidad de datos, sin extender los tiempos de recolección. Los resultados son entregados sin ambigüedades. El tiempo de vida del tubo de rayos X se extiende mediante su funcionamiento a 600 W. Para compensar su funcionando a una baja potencia, una óptica SHINE (monocromador curvado especial) se utiliza para producir flujo de rayos X utilizable, comparable a un sistema de rayos X estándar.

Especialmente para la producción de estructuras de calidad de publicación.

El requisito principal de diseño cuando se creó el XtaLAB mini II, fue que las estructuras producidas podrían ser publicables en las revistas científicas más exigentes. El detector de HPC se coloca de modo que el valor máximo 2θ está fuera de los requisitos del Acta Cryst. El software proporciona todas las herramientas que usted necesita para generar datos de calidad de publicación que se pueden utilizar para determinar las estructuras 3D de una variedad de paquetes de análisis de la estructura.

Ask for more info

Features

  • Diseño asequible y con bajos costos de operación
  • Requiere de un mínimo entrenamiento y soporte
  • Software automático de solución de la estructura
  • Proporciona información estructural definitiva
  • Complemento ideal para un espectrómetro de NMR
  • Perfecto instrumento de laboratorio de autoservicio
  • Instrumento ideal para la enseñanza
  • Resultados con calidad de publicación
  • Detector de HPC refrigerado por aire
  • No se requiere de una infraestructura especial (110 VAC)
  • Criosistema opcional disponible

Especificaciones de XtaLAB mini™ II

Un sistema de cristalografía de rayos X de sobremesa con todas las funciones

  • Diseño resistente y simple
  • Software intuitivo, ideal para apoyar a los usuarios no expertos
  • Lo último en tecnología de Contador Híbrido de Fotones
  • Calidad excepcional de datos, las estructuras listas para publicar superaran las normas de publicación IUCr

Instálelo en cualquier lugar
  • Requiere de potencia estándar AC - en cualquier parte del mundo
  • Ocupa muy poco espacio: 560 mm (ancho) x 395 mm (profundo) x 674 mm (alto) y ~ 100 kg de peso
  • Diseño extremadamente seguro - no hay posibilidad de exposición accidental o bloqueo del obturador vinculado a la puerta del recinto.
Accesible a todos
  • El modo automático permite todos los pasos para la recopilación de datos para un informe completo de la estructura de una sola fórmula química introducida.
  • Determinación automática inteligente de grupo de espacio
  • Manejo completo de duplicaciones disponibles
  • Corrección de absorción numérica disponibles
Excepcional calidad de datos
  • Nueva óptica SHINE- de calidad y recolección de datos comparables al sistema convencional con 1/4 de consumo de potencia (600 W)
  • Nuevo detector HPC, recientemente desarrollado para XtaLAB mini II
  • Dispositivo de baja temperatura compatible y disponible

XtaLAB mini™ accessories

Oxford Cryostream 800

Whether 800 series, Plus or Compact, all Cryostream systems have the same unique mode of operation, allowing the systems to offer fast cool-down, high stability, low LN2 consumption and superior laminar flow. The new quiet pump is responsible for the gas flow from an unpressurised Dewar, through a flexible vacuum insulated transfer line, into the Cryostream coldhead. Once inside the coldhead, the liquid nitrogen passes through a heater, which evaporates most of the liquid into gas. This gas then flows outward along one path of the heat exchanger, through the temperature controller, to arrive at the pump at approximately 10 Kelvin below room temperature.

The flow rate of the gas from the pump is regulated by a variable flow controller. This gas flows back into the Cryostream coldhead where it is re-cooled along the second path of the heat exchanger.The gas temperature is regulated by a heater and sensor before entering the nozzle of the Cryostream, flowing along the isothermal nozzle and out over the sample.The temperature indicated on the Controller is a mapped temperature for the crystal position.

The default Cryostream gas flow rate is 5 L /minute, which equates to roughly 0.6 L of liquid nitrogen per hour.This means that a 60 litre Dewar will last for up to 4 days so can easily be run over a weekend without refilling. Turbo mode gives an increased flow rate of 10 L/minute if required.

Cryostream features
  • Best available temperature range of 80- 400 Kelvin as standard or 80-500 Kelvin in Plus model
  • Oxford Cryosystems superior laminar gas flow system; means significantly less icing than alternative systems
  • Proven stability in excess of 0.1 Kelvin
  • On-line and local data logging, monitoring and control
  • Fast cool-down to 100 Kelvin in just 20 minutes
  • Low & constant LN2 consumption means a 60 litre dewar can last up to 4 days*
  • Highly accurate mapping of temperature at crystal position
  • *At temperatures greater than 90 Kelvin, LN2 consumption may increase to 1.2 L/hour

Notice: New version of CrysAlisPro v38.46 released on 24th January 2017

User-inspired software for superior data quality
Rigaku Oxford Diffraction systems come complete with CrysAlisPro, our user-inspired data collection and data processing software for small molecule and protein crystallography. Designed around an easy-to-use graphical user interface, CrysAlisPro can be operated under fully automatic, semi-automatic or manual control.

How to get CrysAlisPro
The software is freely available for users of Rigaku Oxford Diffraction and can be downloaded from our forum. Please register at www.rigakuxrayforum.com. Any queries related to the software may be answered on the forum.

Automatic Crystal Screening

At the heart of CrysAlisPro are the automatic crystal screening, data collection and strategy modules. For a typical crystal, a short pre-experiment lasting less than five minutes is recorded to evaluate crystal quality. From the first frame, CrysAlisPro automatically evaluates the crystal quality and provides the user with information regarding the unit cell, intensity estimation by resolution range and suggested frame exposure times for the full data collection. Additionally, CellCheckCSD (developed with the Cambridge Crystallographic Data Center) helps prevent the collection of known structures by automatically screening the CSD for unit cell matches.

Fastest Strategy Software


CrysAlisPro‘s sophisticated strategy software automatically calculates the optimal conditions for fast, high quality, complete data collection. All strategies are rapidly calculated based on the specific crystal orientation and unit cell. The user has complete control to optimize the strategy for a wide variety of targets including multiplicity, time and resolution. Strategy calculations are extremely fast and efficient, allowing the user to quickly adapt the data collection conditions for a variety of experiment types, with both Mo and Cu radiation.
Automatic and Concurrent Data Reduction

Data reduction and processing initialize automatically with the start of data collection and employ intelligent routines which
tune the parameters to give the best data quality. Processed data are always available and accompanied by real time on-screen feedback of data quality and completeness. CrysAlisPro is programmed for multi-core data processing, meaning rapid results even from the largest data sets.

A Full Complement of Crystallographic Tools

In addition to automatic routines, CrysAlisPro includes a very comprehensive and highly effective range of tools and functions for dealing with non-standard and problematic data. These tools are available through the GUI or from a command line interface, and include:

  • Advanced unit cell finding

  • EwaldPro — Reciprocal lattice viewer
  • Twin data processing 

  • Incommensurate data processing 

  • Automated high pressure data collection and reduction 

  • Face-indexing — with automated shape generation 

  • Multi-temperature experiments 

  • Powder data collection and processing 

  • Precession image generation 

  • Axial photos 


Software Compatibility
Use CrysAlisPro to import and process frames from synchrotrons and other detector formats. Data is automatically output in HKLF format and quick links interface directly to Olex2, CRYSTALS, WinGX and Jana (for use of SHELX, SIR, Superflip and other programs, where installed). Data files are also easily exported for use in third party data reduction packages including MOSFLM, DENZO and XDS.

We welcome user feedback and CrysAlisPro is frequently updated with new features inspired by users. In this way, our software is continually improving so that your system always provides data of the highest quality. Visit our forum for more information.


AutoChem

AutoChem is the ultimate productivity tool for chemical crystallography, offering fast, fully automatic structure solution and refinement during data collection. 
Developed exclusively for Rigaku Oxford Diffraction by the authors of Olex2 (Durham University and OlexSys), AutoChem builds upon the success of our original AutoChem software. Seamlessly integrated as an optional plug-in for CrysAlisPro, AutoChem offers an advanced approach for automatic structure determination, with an even higher rate of success.

AutoChem can work with or without 
a chemical formula, intelligently using multiple solution programs and typically requiring only partial completeness to solve routine structures. In more difficult cases, AutoChem will make attempts in multiple space groups. A number of refinement options are available; atoms are modeled anisotropically where the data supports it and hydrogen atoms are included in calculated geometric positions. The structure is then re-labeled and refined to completion before a final structure report is generated.

CrysAlisPro displays the structure and key refinement parameters, and provides a link to a full Rigaku Oxford Diffraction’s edition of Olex2 — complete with AutoChem plug-in — which can be launched at any time. Here the user can review all aspects of the refinement, step back to any stage of the process and apply changes as necessary.

XtaLAB mini™ applications

Fast complete structure

 

Sample 4-aminobenzenesulfonamide
Formula C6H8N2O2S
Formula weight 172.20
Sample size 0.40 × 0.32 × 0.28 mm
Space group P21/c
Lattice constants a = 8.9963(6) Å
b = 9.013(5) Å
c = 10.053(6) Å
β = 111.529(8)°
V = 757.9(8) ų

Z = 4
Measurement time 2 hours 7 minutes
Rmerge 2.45 %
R1 3.21 %
For many applications: inorganic and organic materials

 

Sample Potassium tetrachloroplatinate (II)
Formula K2PtCl4
Formula weight 610.19
Sample size 0.18 × 0.18 × 0.18 mm
Space group P4/mmm
Lattice constants a = 6.995(10) Å
c = 4.131(6) Å
V = 202.1(5) ų
Z = 16

Measurement time

1 hour 27 minutes

Rmerge

2.91 %
R1 1.731 %
Suitable for short and long unit cell axes

 

Sample Raffinose
Formula C18H32O16·5H2O
Formula weight 594.52
Sample size 0.25 × 0.13 × 0.12 mm
Space group P212121
Lattice constants a = 8.99700(6) Å
b = 12.3300(9) Å
c = 23.8100(17) Å
V = 2633.4(3) ų
Z = 4
Measurement time 5 hours 30 minutes
Rmerge 6.74 %
R1 4.29 %

XtaLAB mini publications

  1. Venkatesha R. Hathwar, Tejender S. Thakur, Tayur N. Guru Row, and Gautam R. Desiraju. "Transferability of Multipole Charge Density Parameters for Supramolecular Synthons: A New Tool for Quantitative Crystal Engineering." 2011, Cryst. Growth Des., 11 (2), pp. 616–623.
  2. Ritesh Dubey and Gautam R. Desiraju. Exploring the Crystal Structure Landscape with a Heterosynthon Module: Fluorobenzoic Acid:1,2-Bis(4-pyridyl)ethylene 2:1 Cocrystals." 2015,
    Cryst. Growth Des., 15(1), pp. 489–496.
  3. Arijit Mukherjee and Gautam R. Desiraju. "Halogen Bonding and Structural Modularity in 2,3,4- and 3,4,5-Trichlorophenol." 2011, Cryst. Growth Des., 11(9), pp. 3735–3739.
  4. Srinu Tothadi, Palash Sanphui, and Gautam R. Desiraju. "Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds." 2014, Cryst. Growth Des., 14(10), pp. 5293–5302.
  5. Srinu Tothadi, Sumy Joseph, and Gautam R. Desiraju. "Synthon Modularity in Cocrystals of 4-Bromobenzamide with n-Alkanedicarboxylic Acids: Type I and Type II Halogen···Halogen Interactions." 2013, Cryst. Growth Des., 13(7), pp. 3242–3254.
  6. Srinu Tothadi and Gautam R. Desiraju. "Synthon Modularity in 4-Hydroxybenzamide–Dicarboxylic Acid Cocrystals." 2012, Cryst. Growth Des., 12(12), pp. 6188–6198.
  7. Srinu Tothadi and Gautam R. Desiraju. "Designing ternary cocrystals with hydrogen bonds and halogen bonds." 2013, Chem. Commun., 49, pp. 7791-7793.
  8. Arijit Mukherjee and Gautam R. Desiraju. "Combinatorial Exploration of the Structural Landscape of Acid–Pyridine Cocrystals." 2014, Cryst. Growth Des., 14(3), pp. 1375–1385.
  9. Yutaka Ishida and Hiroyuki Kawaguchi. "Methylene-Linked Anilide—Bis(aryloxide) Ligands: Lithium, Sodium, Potassium, Chromium(III), and Vanadium(III) Ligation." 2014, Inorg. Chem., 53(13), pp. 6775–6787.
  10. Yutaka Ishida and Hiroyuki Kawaguchi. Nitrogen Atom Transfer from a Dinitrogen-Derived Vanadium Nitride Complex to Carbon Monoxide and Isocyanide." 2014, J. Am. Chem. Soc., 136(49), pp. 16990–16993.
  11. A. Mukherjee, K. Dixit, S. P. Sarma and G. R. Desiraju. "Aniline-phenol recognition: from solution through supramolecular synthons to cocrystals." 2014, IUCrJ, 1, pp. 228-239.
  12. A. Mukherjee and G. R. Desiraju. "Halogen bonds in some dihalogenated phenols: applications to crystal engineering." 2014, IUCrJ, 1, pp. 49-60.
  13. D. E. Janzen, A. M. Kooyman and K. A. Lange. "Crystal structures of bis[2-(di-phenylphosphinothioyl)phenyl] ether and bis{2-[diphenyl(selanylidene)phosphan-yl]phenyl} ether." 2014, Acta Cryst., E70, pp. 536-540.
  14. Eagle, C. T., Kpogo, K. K., Zink, L. C. and Smith, A. E. "Tetrakis[ -N-(2,4,6-trimethylphenyl)acetamidato]-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2012, Acta Cryst., E68, m877.
  15. Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. and Janzen, D.
    E."trans-Acetyldicarbonyl(η5-cyclopentadienyl)[tris(furan-2-yl)phosphane-κP] molybdenum(II)." 2013, Acta Cryst., E69, m475-m476.
  16. Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. ans Janzen, D. E.
    "trans-Acetyldicarbonyl(η5-cyclopentadienyl)(methyldiphenylphosphane) molybdenum(II)." 2012, Acta Cryst., E68, m1158-m1159.
  17. Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. and Janzen, D. E. "Crystal structures of
    trans-acetyldicarbonyl(η5-cyclopentadienyl)(dimethylphenylphosphane)molybdenum(II) and
    trans-acetyl-dicarbonyl(η5-cyclopentadienyl)(ethyldiphenylphosphane)molybdenum(II)." 2014, Acta Cryst., E70, 216-220.
  18. Sanphui, P. and Rajput, L. "Tuning solubility and stability of hydrochlorothiazide co-crystals." 2014, Acta Cryst., B70, 81-90.
  19. Eagle, C. T., Quarshie, F., Ketron, M. E. and Atem-Tambe, N. "cis-Tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2013, Acta Cryst., E69, m329.
  20. Janzen, D. E., Crepeau, L. E., Hageseth, B. D. and Wollack, J. W. "Bis(2-nitrophen-yl)methane." 2014, Acta Cryst., E70, o859.
  21. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Quarshie, F. "(3-Methyl-benzonitrile-κN)tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II)(Rh-Rh)." 2013, Acta Cryst., E69, m639.
  22. Eagle, C. T., Quarshie, F. and Cook, K. M. "(3-Methylbenzonitrile-1 N)-cis-tetrakis(μ-N-phenylacetamidato)-1:2κ4N:O;1:2κ4O:N-dirhodium(II)(Rh-Rh)." 2014, Acta Cryst., E70, m304.
  23. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Cook, K. M. "Crystal structure of
    tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(2-methylbenzonitrile-κN)rhodium(II)](Rh-Rh)." 2014, Acta Cryst., E70, m333-m334.
  24. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "1-Phenylpiperazine-1,4-diium tetrachloridocobalt(II)." 2014, Acta Cryst., E70, m139.
  25. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Trichlorido(1-ethyl-piperazin-1-ium)cobalt(II)." 2014, Acta Cryst., E70, m166.
  26. Mathlouthi, M., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Crystal structure of 2,5-dimethylanilinium hydrogen maleate." 2014, Acta Cryst., E70, o1183-o1184.
  27. Tothadi, S. and Desiraju, G. R. "4-Hydroxybenzamide 1,4-dioxane hemisolvate." 2012, Acta Cryst., E68, o2661.
  28. Okoro, C. O., Siddiquee, T. and Fadeyi, O. O. "5,7-Dibromo-3-trifluoromethyl-3,4-dihydroacridin-1(2H)-one." 2011, Acta Cryst., E67, o2052.
  29. Rahman, M. A., Karim, M., Arifuzzaman, M., Siddiquee, T. & Daniels, L. M. "2,9-Bis(5-sulfanylidene-4,5-dihydro-1,3,4-oxadiazol-2-yl)-1,10-phenanthroline dimethyl sulfoxide disolvate." 2014, Acta Cryst., E70, o321-o322.
  30. Mapp, L. and Coles, S. "Delivering practical crystallography experience to undergraduate students." 2014, Acta Cryst., A70, C1276.
  31. Frederick P. Malan, Eric Singleton and Reinout Meijboom. "Crystal structure of bis(phenylethynyl)tetrakis(dimethylphenylphosphine)ruthenium(II), C48H54P4Ru." 2014, Z. Kristallogr., NCS 229, pp. 255-257.
  32. Srinu Tothadi and Gautam R. Desiraju. "Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering." Phil. Trans. R. Soc. A, 2012, 370, pp. 2900–2915.
  33. Daron E. Janzen and Kent R. Mann. "Red and Orange Polymorphs of [Pt(terpy)Cl]Cl·2H2O." 2013, J. Chem. Crystallogr., 43(6), pp. 292-298.
  34. Sunil Varughese, Shashi Bhushan Sinha and Gautam R. Desiraju. "Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design."
    2011, Science China Chemistry, 54(12), pp. 1909-1919.
  35. Aya Sakon and Hidehiro Uekusa. "Supramolecular Structure of 5-Hydroxyisophtalic Acid-Ethanol 2:1 Solvate." 2012, X-ray Structure Analysis Online, 28, pp. 35-36.
  36. Srinu Tothadi, Balakrishna R. Bhogala, Asha R. Gorantla, Tejender S. Thakur, Ram K. R. Jetti and Gautam R. Desiraju. "Triclabendazole: An Intriguing Case of Co-existence of Conformational and Tautomeric Polymorphism." 2012, Chemistry – An Asian Journal, 7(2), pp. 330–342.
  37. Abdur R Miah, Jagodish C Sarker, Subas Rajbangshi, Shariff E Kabir, Shishir Ghosh and Tasneem A Siddiquee. "Synthesis and characterization of tungsten carbonyl complexes containing thioamides." 2012, Ind. J. Chem., 53A, pp. 274-280.
  38. Jun Zhao, Dong-Sheng Li, Ya-Pan Wu, Wen-Wen Dong, Liang Bai and Jack Y. Lu. "Structural diversity and properties of six coordination polymers derived from 1,2/1,3-phenylenedioxydiacetic acids and varied N-donor co-ligands." 2104, Inorg. Chim. Acta, 413, pp. 6-15.
  39. Tejender S. Thakur, Yasser Azim, Tothani Srinu and Gautam R. Desiraju. "N-H···O and C-H···O interaction mimicry in the 1:1 molecular complexes of 5,5’-diethylbarbituric acid with urea and acetamide." 2010, Current Science, 98(6), pp. 793-802.
  40. Daron E. Janzen and Arianna M. Kooyman. "Gold(III) Assisted C-H activation of 1,4,7-trithiacyclonone: Synthesis and Spontaneous Resolution of a Bicyclic Chiral Sulfonium Salt." 2104,
    Dalton Trans., 43, pp. 3424-3427.
  41. Malay Patra, Klaus Merz and Nils Metzler Nolte. "Planar Chiral (η6-arene)Cr(CO)3 Containing Carboxylic Acid Derivatives: Synthesis and Use in the Preparation of Organometallic Analogues of the Antibiotic Platensimycin." 2012, Dalton Trans., 41, pp. 112-117.
  42. Mohammad Arifuzzaman, Tasneem A. Siddiquee, Mohammad R. Karim, Aminul H. Mirza, Mohamad A. Ali. "Synthesis and Structure of Dimeric Copper (I) Complex from Bis[(2,2’)-dimethyl 2,2’-(1,10-phenanthroline-2,9-diyl) bis(methan-1-yl-1-ylidene)-bis(hydrazinecarbodithioate)]." 2013, Crystal Structure Theory and Applications, 2, pp. 159-166
  43. Pawel Grobelny, Arijit Mukherjee and Gautam R. Desiraju. "Polymorphs and hydrates of Etoricoxil, a selective COX-2 inhibitor." 2012, CrystEngComm, 14, pp. 5785-5794.
  44. Srinu Tothadi. "Polymorphism in cocrystals of urea:4,4′-bipyridine and salicylic acid:4,4′-bipyridine." 2014, CrystEngComm., 16, pp. 7587-7597.
  45. Arijit Mukherjee, Srinu Tothadi, Shaunak Chakraborty, Somnath Ganguly and Gautam R. Desiraju. "Synthon identification in co-crystals and polymorphs with IR spectroscopy. Primary amides as a case study." 2013, CrystEngComm., 15, pp.4640-4654.
  46. M.A. Guino-o, M. J. Folstad and D. E. Janzen "Crystal structures of 2,6-bis[(1H-1,2,4-triazol-1-yl)methyl]pyridine and 1,1-[pyridine-2,6-diylbis(methylene)]bis(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide." 2015, Acta Cryst., E71, pp. 128-132.
  47. Lalit Rajput, Palash Sanphui, and Gautam R. Desiraju. "New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals and Solubility." 2013, Cryst. Growth Des., 13(8), pp. 3681-3690.
  48. K. A. Siddiqui. "C–H···Onitrate synthon assisted molecular assembly of hydrogen bonded Ni(II) and Cu(II) complexes." 2013, J. Coord. Chem., pp. 2039-2050.
  49. Hoong-Kun Fun, Ching Kheng Quah, Prakash S. Nayak, B. Narayana and B. K. Sarojini. "N-(2-Bromophenyl)-2-(naphthalen-1-yl)acetamide." 2012, Acta Cryst. E71, o2657.
  50. Arijit Mukherjee, Pawel Grobelny, Tejender S. Thakur and Gautam R. Desiraju. "Polymorphs, Pseudopolymorphs and Co-Crystals of Orcinol: Exploring the Structural Landscape with High Throughput Crystallography." 2011, Cryst. Growth Des., 11, pp. 2637-2653.
  51. Eon S. Burkett and Tasneem A. Siddiquee. "Coordination Nature of 4-Mercaptoaniline to Sn(II) Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV) Complex." 2014, Inorganics, 2(4), pp. 652-659.
  52. Srinu Tothadi, Arijit Mukherjee and Gautam R. Desiraju. "Shape and size mimicry in the design of ternary molecular solids: Towards a robust strategy for crystal engineering." 2011,
    Chem. Commun., 47, pp. 12080-12082.
  53. Jagodish C. Sarkar, Md. Saifur Rahman, Shariff E. Kabir and Tasneem A. Siddiquee. "X-Ray crystal structure of [(μ-H)Os2(CO)4(SnPh3)2(μ-HSnPh2)(μ-dppf)] (dppf= 1,1'́-bis(diphenylphosphino)ferrocene." 2014, Journal of Bangladesh Academy of Sciences, 38(1), pp. 97-101.
  54. Akira Miura, Masanori Nagao, Takahiro Takei, Satoshi Watauchi, Isao Tanaka and Nobuhiro Kumada. "Crystal structures of LaO1-xFxBiS2(x ~ 0.23, 0.46): effect of F doping on distortion of Bi–S plane." 2014, J. Solid State Chem., 212, pp. 213-217.
  55. Daron E. Janzen and Kent R. Mann. "Heteroleptic platinum(II) isocyanide complexes: convenient synthetic access, polymorphs, and vapoluminescence." 2015, Dalton Trans., Advanced Article.
  56. Manish Kumar Mishra, Upadrasta Ramamurty and Gautam R. Desiraju. "Solid Solution Hardening of Molecular Crystals: Tautomeric Polymorphs of Omeprazole." 2015, J. Am. Chem. Soc., Advanced Article.
    Producto(s):
    (Mantenga presionada la
    tecla CTRL para seleccionar
    varios productos)
    Nombre (primer/apellido):
    Compañía:
    Correo electrónico o email:
    Teléfono: Ext:
    Dirección:
    Ciudad:
    Estado/provincia/región: (use la abreviación de dos letras para EU ( US))
    Código o zona postal:
    País:
    Comentarios adicionales
     (no se aceptan URLs)