Quantification of the alpha-to-beta brass ratio in wire coatings

In the radial tire industry, stainless steel wires are used extensively. These wires are coated with brass (Cu, Zn alloys) and can contain two separate phases of brass, alpha and beta. Ideally, these wire coatings should be completely or predominantly alpha-phase brass. If the beta phase concentration becomes too large, it affects the wire strength while pulling through the dyes and causes the wire to snap. The beta phase also decreases the adherence of the wires to rubber, resulting in a weakening in the overall tire strength. Quantification of the alpha to beta brass ratios can easily be accomplished with the MiniFlex diffractometer as part of an on-line quality control program.

brass1

Figure 1: The various gauges of brass coated steel wire for diffraction analysis

brass2

Figure 2: Diffraction pattern of a 1.58 gauge wire. Red lines correspond to the alpha brass phase. Blue lines correspond to the beta brass phase.

The fifth generation MiniFlex is a general purpose X-ray diffractometer that can perform qualitative and quantitative analysis of polycrystalline materials. The MiniFlex is available in two variations. Operating at 600 watts (X-ray tube), the MiniFlex 600 is twice as powerful as other benchtop models, enabling faster analysis and improved overall throughput. Running at 300 watts (X-ray tube), the new MiniFlex 300 does not require an external heat exchanger. Each model is engineered to maximize flexibility in a benchtop package. Read more...

Ask for more info