Skip to main content

SmartLab Studio II

SmartLab Studio II is a new Windows®-based software suite developed for the flagship Rigaku SmartLab X-ray diffractometer that integrates user privileges, measurements, analyses, data visualization and reporting. Newly available for the MiniFlex, the modular (plugin) architecture of this software delivers state-of-the-art interoperability between the functional components. Just one click switches from measurement to analysis. Watch real-time scans from one experiment while simultaneously analyzing other data on the same desktop by selecting an appropriate layout. The software provides various analysis tools such as automatic phase identification, quantitative analysis, crystallite-size analysis, lattice constants refinement, Rietveld analysis, ab initio structure determination, etc.

SmartLab Studio (SLSII)

 

Powder XRD: phase identification with a variety of available databases

Peak position, FWHM, integrated intensity and crystallite size are calculated by profile fitting. Rigaku’s optional “Hybrid Search/Match” uses peak-base qualification, which detects heavily distorted lattices, to identify solid solution phases that are difficult to identify. It also can determine whether preferred orientation exists based on decomposed peak intensities.

SmartLab Studio II (SLSII)

 

Powder XRD: quantification package

This option supports internal standard, external standard, and standard addition calibration methods. Calibration curves are used to quantify specific phases in the sample.

SmartLab Studio II Quant

 

Powder XRD: comprehensive analysis package

This optional package can provide analysis results such as crystalline size, lattice strain, lattice parameters refinement, % crystallinity based on fully automated profile fitting executed after loading measured data. Results obtained aid in understanding the relationship between structure and physical properties, and allow users to compare results across different samples.

SLS-II Comprehensive

 

Powder XRD: direct derivation analysis package

The direct derivation (DD) method was invented by Professor Hideo Toraya of Rigaku Corporation in 2016. It quantifies phases from all integrated diffraction intensities and the chemical formulas of each phase found. Compared to the classical RIR method, where a single integrated peak intensity and RIR number are used, the DD method is less affected by preferred orientation and peak overlap.

SmartLab Studio II DD method

 

Powder XRD: Rietveld analysis package

The package performs phase identification followed by Whole Powder Pattern Fitting (WPPF). The Rietveld analysis refines crystal structure or quantifies the phases directly from measured data, requiring neither reference samples nor a calibration curve. The whole powder pattern decomposition (Pawley method) is based on both the measured peak positions, and peaks shapes.

SLSII Rietveld

 

Automation
Audit Trail