Skip to main content
nano3DX
Features
  • True submicron resolution by parallel beam geometry coupled with an ultra-thin scintillator and optical lens magnification
  • High-contrast for low-density materials by selectable characteristic radiations (Cr 5.4 keV, Cu 8 keV, Mo 17 keV) additional to bremsstrahlung radiation from W target
  • Easy radiation selection by the dual-wavelength X-ray source
  • Fast scans by the MicroMax-007 high-power (1200 W) rotating anode X-ray source and sCMOS detector

 

An Insight to the nano3DX - X-Ray Microscope

X-ray microscope

True submicron high-contrast X-ray computed tomography

Rigaku nano3DX represents the state of the art in laboratory-based nanoscale X-ray imaging. With up to 100X the X-ray flux of conventional microfocus X-ray sources, the nano3DX provides fast, true sub-micron 2D, 3D, and 4D measurements for a wide range of sample types.

High-resolution: High-quality CT images are obtained at submicron resolution by utilizing parallel beam X-ray geometry coupled with an ultra-thin scintillator and optical lens magnification.

High-contrast for lighter materials: The contrast in samples with low-density (organics, composites, ceramics, polymers, light metals, and minerals) is enhanced by utilizing high-power (1200 W) quasi-monochromatic radiations from 5.4 keV to 17 keV.

High-speed: A combination of the high-flux X-ray source and an sCMOS detector enhances sample throughput and enables high-resolution 4D measurements for time-resolved in-situ experiments.

Specifications
Product name nano3DX
Benefit True submicron high-contrast X-ray computed tomography
Technology X-ray computed tomography
X-ray generator MicroMax-007 HF rotating anode X-ray generator
Tube voltage 20 to 60 kV
Tube current up to 30 mA
Target Cr, Cu, Mo, and W
Detector sCMOS
Field of view Maximum 10 mm
Resolution Maximum 325 nm

nano3DX videos

Applications

The following applications are relevant to this product

Application Bytes


Ant tibia 1

Ant tibia 2

Ant tibia 3

Detergent particle

Foam 1

Mold/composite


Learn more about our products at these events

Booth number Date Location Event website
Ceramics Expo 2020 - Cleveland, OH Website

Webinars - X-ray Computed Tomography for Materials Science

X-ray CT Publications


Our first CT project

Morio ONOE, Jing Wen TSAO and Hiroaki YAMADA, Hiroshi NAKAMURA, Jin KOGURE and Hiromi KAWAMURA, M. Y. (1984). COMPUTED TOMOGRAPHY FOR MEASURING THE ANNUAL RINGS OF A LIVE TREE. Nuclear Instruments and Methods in Physics Research, 221, 213-220. https://www.sciencedirect.com/science/article/pii/0167508784902023 

  1. Tomáš Sedlačík, Takayuki Nonoyama, Honglei Guo, Ryuji Kiyama, Tasuku Nakajima, Yoshihiro Takeda, Takayuki Kurokawa, and Jian Ping Gong (2020). Preparation of Tough Double- and Triple-Network Supermacroporous Hydrogels through Repeated Cryogelation. Chem. Mater. Published online18 September 2020. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02911
  2. Nanako Sakata, Yoshihiro Takeda, Masaru Kotera, Yasuhito Suzuki, and Akikazu Matsumoto. (2020). Interfacial Structure Control and Three-Dimensional X-ray Imaging of an Epoxy Monolith Bonding System with Surface Modification. Langmuir, 36, 37, 10923–10932. https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01481
  3. Kenji Ohta , Tatsuya Wakamatsu, Manabu Kodama , Katsuyuki Kawamura, and Shuichiro Hirai. Laboratory-based x-ray computed tomography for 3D imaging of samples in a diamond anvil cell in situ at high pressures. Rev. Sci. 91, 091101. https://aip.scitation.org/doi/pdf/10.1063/5.0014486
  4. Fukami, T., Koide, T., Hisada, H., Inoue, M., Yamamoto, Y., Suzuki, T., & Tomono, K. (2016). Pharmaceutical evaluation of atorvastatin calcium tablets available on the Internet: A preliminary investigation of substandard medicines in Japan. Journal of Drug Delivery Science and Technology, 31, 35-40. https://doi.org/10.1016/j.jddst.2015.11.006 
  5. Kalasova, D., Zikmund, T., Pina, L., Takeda, Y., Horvath, M., Omote, K., & Kaiser, J. (2019). Characterization of a laboratory-based X-ray computed nanotomography system for propagation-based method of phase contrast imaging. IEEE Transactions on Instrumentation and Measurement, PP(c), 1-1. https://doi.org/10.1109/tim.2019.2910338 
  6. Kunishima, N., Takeda, Y., Hirose, R., Kalasová, D., Šalplachta, J., & Omote, K. (2020). Visualization of internal 3D structure of small live seed on germination by laboratory-based X-ray microscopy with phase contrast computed tomography. Plant Methods, 16(1), 1-10. https://doi.org/10.1186/s13007-020-0557-y 
  7. Zhang, S., Byrnes, A. P., Jankovic, J., & Neilly, J. (2019). Management, Analysis, and Simulation of Micrographs with Cloud Computing. Microscopy Today, 27(2), 26-33. https://doi.org/10.1017/s1551929519000026 
  8. Kalasová, D., Zikmund, T., Pína, L., Horváth, M., & Kaiser, J. (2016). Phase contrast tomographic imaging of polymer composites. 2020, 2020. http://ctlab.ceitec.cz/files/252/165.pdf 
  9. Kalasova, D., Pavlinakova, V., Zikmund, T., Vojtova, L., & Kaiser, J. (2018). Correlation of X-ray Computed Nanotomography and Scanning Electron Microscopy Imaging of Collagen Scaffolds. Microscopy and Microanalysis, 24(S2), 104-105. https://doi.org/10.1017/s1431927618012904 
  10. Hisada, K., Matsuoka, M., Tabata, I., Hirogaki, K., & Hori, T. (2013). Two-step radical grafting onto polypropylene fiber initiated by active species prepared through the irradiation of electron beam. Journal of Photopolymer Science and Technology, 26(2), 277-282. https://doi.org/10.2494/photopolymer.26.277 
  11. Sekita, A., Matsugaki, A., & Nakano, T. (2017). Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer. Bone, 97, 83-93. https://doi.org/10.1016/j.bone.2017.01.004 
  12. Nanako Sakata, Yoshihiro Takeda, Masaru Kotera, Yasuhito Suzuki, and A. M. (2020). Non‐destructive 3D X‐ray Imaging of Internal and Interfacial Structure of Epoxy Monolith and Strength Control by Surface Modification for the Monolith Bonding System. Langmuir. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.0c01481 
  13. Tomáš Sedlačík, Takayuki Nonoyama, Honglei Guo, Tasuku Nakajima, Yoshihiro Takeda, Takayuki Kurokawa, J. P. G. (2020). Tough Double- and Triple- Network Supermacroporous Hydrogels through Repeated Cryogelation. ACS Publications. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02911 
  14. Kakio, T., Yoshida, N., Macha, S., Moriguchi, K., Hiroshima, T., Ikeda, Y., Kimura, K. (2017). Classification and visualization of physical and chemical properties of falsified medicines with handheld Raman spectroscopy and X-Ray computed tomography. American Journal of Tropical Medicine and Hygiene, 97(3), 684-689. https://doi.org/10.4269/ajtmh.16-0971 
  15. Takase, A., McNulty, T., & Fitzgibbons, T. (2018). Foam Porosity Calculation by X-Ray Computed Tomography and Errors Caused by Insufficient Resolution. Microscopy and Microanalysis, 24(S2), 546-547. https://doi.org/10.1017/s1431927618014927 
  16. Omote, K., Iwata, T., Takeda, Y., & Ferrara, J. D. (2017). Investigation for fuel-cell structures with multi-scale X-ray analysis. Rigaku Journal, 33(2), 8-13. https://www.semanticscholar.org/paper/Investigation-for-fuel-cell-structures-with-X-ray-Omote-Iwata/78e57af8fa13252533eabb7d5e5a32ceadac9eaa?p2df 
  17. Watanabe, M., Takeda, Y., Maruyama, T., Ikeda, J., Kawai, M., & Mitsumata, T. (2019). Chain structure in a cross-linked polyurethane magnetic elastomer under a magnetic field. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20122879 
  18. Kunishima, N., Takeda, Y., Hirose, R., Kalasová, D., Šalplachta, J., & Omote, K. (2020). Visualization of internal 3D structure of small live seed on germination by laboratory-based X-ray microscopy with phase contrast computed tomography. Plant Methods, 16(1), 1-10. https://doi.org/10.1186/s13007-020-0557-y 
  19. Kalasova, D., Zikmund, T., Pina, L., Takeda, Y., Horvath, M., Omote, K., & Kaiser, J. (2020). Characterization of a laboratory-based x-ray computed nanotomography system for propagation-based method of phase contrast imaging. IEEE Transactions on Instrumentation and Measurement, 69(4), 1170-1178. https://doi.org/10.1109/TIM.2019.2910338 
  20. Akitomo, F., Sasabe, T., Yoshida, T., Naito, H., Kawamura, K., & Hirai, S. (2019). Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water. Journal of Power Sources, 431(February), 205-209. https://doi.org/10.1016/j.jpowsour.2019.04.115 
  21. Watanabe, M., Takeda, Y., Maruyama, T., Ikeda, J., Kawai, M., & Mitsumata, T. (2019). Chain structure in a cross-linked polyurethane magnetic elastomer under a magnetic field. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20122879 
  22. Kalasová, D., Zikmund, T., Mancini, L., Jaroš, J., Tesařová, M., Kaucká, M., Kaiser, J. (2016). Industrial Tomography System for Answering Biological Issues: Development of the Mouse Embryo Face. 6th Conference on Industrial Computed Tomography (ICT 2016), (iCT), 1-9. https://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id37.pdf 
  23. Tanaka, K., Yamada, T., Moriito, K., & Katayama, T. (2016). The effect of molding pressure on the mechanical properties of CFRTP using paper-type intermediate material. High Performance and Optimum Design of Structures and Materials II, 1(Hpsm), 307-315. https://doi.org/10.2495/hpsm160281 
  24. Watanabe, M., Ikeda, J., Takeda, Y., Kawai, M., & Mitsumata, T. (2018). Effect of Sonication Time on Magnetorheological Effect for Monomodal Magnetic Elastomers. Gels, 4(2), 49. https://doi.org/10.3390/gels4020049 
  25. Fukami, T., Koide, T., Hisada, H., Inoue, M., Yamamoto, Y., Suzuki, T., & Tomono, K. (2016). Pharmaceutical evaluation of atorvastatin calcium tablets available on the Internet: A preliminary investigation of substandard medicines in Japan. Journal of Drug Delivery Science and Technology, 31, 35-40. https://doi.org/10.1016/j.jddst.2015.11.006 

  1. Aung, W., Jin, Z. H., Furukawa, T., Claron, M., Boturyn, D., Sogawa, C., … Saga, T. (2013). Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ3 integrin tracer 64Cu-labeled cyclam-RAFT-c(-RGDfK-)4. Molecular Imaging, 12(6), 376-387. https://doi.org/10.2310/7290.2013.00054 
  2. Arai, Y., Yamada, A., Ninomiya, T., Kato, T., & Masuda, Y. (2005). Micro-computed tomography newly developed for in vivo small animal imaging. Oral Radiology, 21(1), 14-18. https://doi.org/10.1007/s11282-005-0024-5 
  3. Reedy, C. L. (2020). 3D Documentation and Analysis of Porosity in Deteriorated Historic Brick. Studies in Conservation, 0(0), 1-4. https://doi.org/10.1080/00393630.2020.1752426 
  4. Iikubo, M., Nishioka, T., Okura, S., Kobayashi, K., Sano, T., Katsumata, A., … Sasano, T. (2016). Influence of voxel size and scan field of view on fracture-like artifacts from gutta-percha obturated endodontically treated teeth on cone-beam computed tomography images. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 122(5), 631-637. https://doi.org/10.1016/j.oooo.2016.07.014 
  5. Benjamin M. Davis, Glen F. Rall, M. J. S. (2017). HHS Public Access. Physiology & Behavior, 176(1), 139-148. https://doi.org/10.1016/j.physbeh.2017.03.040 
  6. Bolmin, O., Wei, L., Hazel, A. M., Dunn, A. C., Wissa, A., & Alleyne, M. (2019). Latching of the click beetle (Coleoptera: Elateridae) thoracic hinge enabled by the morphology and mechanics of conformal structures. Journal of Experimental Biology, 222(12). https://doi.org/10.1242/jeb.196683 
  7. Kameoka, S., Matsumoto, K., Kai, Y., Yonehara, Y., Arai, Y., & Honda, K. (2010). Establishment of temporomandibular joint puncture technique in rats using in vivo micro-computed tomography (R-mCT®). Dentomaxillofacial Radiology, 39(7), 441-445. https://doi.org/10.1259/dmfr/37174063 

  1. Hagen, C. K., Vittoria, F. A., Morgó, O. R. I., Endrizzi, M., & Olivo, A. (2020). Cycloidal Computed Tomography. Physical Review Applied, 14(1), 1. https://doi.org/10.1103/PhysRevApplied.14.014069 
  2. Diemoz, P. C., Hagen, C. K., Endrizzi, M., Minuti, M., Bellazzini, R., Urbani, L., … Olivo, A. (2017). Single-Shot X-Ray Phase-Contrast Computed Tomography with Nonmicrofocal Laboratory Sources. Physical Review Applied, 7(4), 1-6. https://doi.org/10.1103/PhysRevApplied.7.044029 
  3. Hagen, C. K., Endrizzi, M., Diemoz, P. C., & Olivo, A. (2016). Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography. Journal of Physics D: Applied Physics, 49(25). https://doi.org/10.1088/0022-3727/49/25/255501 
  4. Zamir, A., Endrizzi, M., Hagen, C. K., Vittoria, F. A., Urbani, L., De Coppi, P., & Olivo, A. (2016). Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments. Scientific Reports, 6(August), 1-9. https://doi.org/10.1038/srep31197