Sistema de cristalografia química de bancada

Para determinação de estrutura molecular em 3D de moléculas pequenas

XtaLAB mini™ II

Determinação automática de estrutura de moléculas pequenas

O novo sistema de cristalografia de raio X de bancada Rigaku XtaLAB mini para determinação automatizada de estruturas químicas tridimensionais (3D) é o mais moderno na área de difração de raio X por cristal único acessível. Desenvolvido para produzir automaticamente estruturas com qualidade de publicação para pesquisadores que não possuem um treinamento especial em cristalografia química, o sistema pode ser ligado em tomadas comuns de parede existentes em todos os mercados (110 V CA para modelos norte-americanos).

Ferramenta de pesquisa de rotina auto-suficiente e fácil de usar

O Rigaku XtaLAB mini é um instrumento de cristalografia química em nível de pesquisa totalmente elétrico que fica sobre a bancada. A qualidade dos dados não é comprometida e os tempos de coleta não são estendidos. Os resultados obtidos são inequívocos. A obtenção de estruturas cristalinas em 3D de alta resolução de pequenas moléculas torna-se comum com a automação de aspectos anteriormente difíceis da determinação de estruturas cristalinas por raio X, desde a coleta de dados durante todo o processo até uma solução de estrutura. O especialista apreciará o conjunto completo de ferramentas para manuseio até mesmo das amostras duplas ou desorganizadas mais difíceis.

Ask for more info


  • Design acessível com custos operacionais baixos
  • Exige um treinamento e suporte mínimos
  • Software automático de solução da estrutura
  • Oferece informações estruturais definitivas
  • Suplemento ideal para um espectrômetro NMR
  • Instrumento perfeito para laboratórios departamentais auto-suficientes
  • Instrumento ideal para ensino
  • Resultados com qualidade de publicação
  • Não é necessária uma infraestrutura especial (110 V CA)
  • Sistema criogênico opcional disponível

XtaLAB mini™ II specifications

Fully featured benchtop single crystal X-ray diffractometer

  • Robust, simple design
  • Intuitive software, ideal to support non-expert users
  • Latest technology Hybrid Photon Counting X-ray detector
  • Exceptional data quality - ready-to-publish structures exceed IUCr publication standards

Install it anywhere
  • Standard AC power required - anywhere in the world
  • Very small footprint - 560 mm (W) × 395 mm (D) × 674 mm (H) and ~ 100 kg weight
  • Extremely safe design - no possibility of accidental exposure; shutter interlock linked to cabinet door
Accessible to all
  • Auto mode allows all steps from data collection to a complete structure report from only an input chemical formula
  • Automatic intelligent space group determination
  • Complete handling of twins available
  • Numerical absorption correction available
Exceptional data quality
  • SHINE optic - comparable data quality and data collection to conventional system with 1/4 of the power use (600 W)
  • New HPC detector - newly developed for XtaLAB mini II
  • Low temperature device compatible and available

XtaLAB mini™ accessories

Oxford Cryostream 800

Whether 800 series, Plus or Compact, all Cryostream systems have the same unique mode of operation, allowing the systems to offer fast cool-down, high stability, low LN2 consumption and superior laminar flow. The new quiet pump is responsible for the gas flow from an unpressurised Dewar, through a flexible vacuum insulated transfer line, into the Cryostream coldhead. Once inside the coldhead, the liquid nitrogen passes through a heater, which evaporates most of the liquid into gas. This gas then flows outward along one path of the heat exchanger, through the temperature controller, to arrive at the pump at approximately 10 Kelvin below room temperature.

The flow rate of the gas from the pump is regulated by a variable flow controller. This gas flows back into the Cryostream coldhead where it is re-cooled along the second path of the heat exchanger.The gas temperature is regulated by a heater and sensor before entering the nozzle of the Cryostream, flowing along the isothermal nozzle and out over the sample.The temperature indicated on the Controller is a mapped temperature for the crystal position.

The default Cryostream gas flow rate is 5 L /minute, which equates to roughly 0.6 L of liquid nitrogen per hour.This means that a 60 litre Dewar will last for up to 4 days so can easily be run over a weekend without refilling. Turbo mode gives an increased flow rate of 10 L/minute if required.

Cryostream features
  • Best available temperature range of 80- 400 Kelvin as standard or 80-500 Kelvin in Plus model
  • Oxford Cryosystems superior laminar gas flow system; means significantly less icing than alternative systems
  • Proven stability in excess of 0.1 Kelvin
  • On-line and local data logging, monitoring and control
  • Fast cool-down to 100 Kelvin in just 20 minutes
  • Low & constant LN2 consumption means a 60 litre dewar can last up to 4 days*
  • Highly accurate mapping of temperature at crystal position
  • *At temperatures greater than 90 Kelvin, LN2 consumption may increase to 1.2 L/hour

User-inspired software for superior X-ray diffraction data quality
Rigaku Oxford Diffraction single crystal X-ray diffractometers come complete with CrysAlisPro, our user-inspired data collection and data processing software for small molecule and protein crystallography. Designed around an easy-to-use graphical user interface, CrysAlisPro can be operated under fully automatic, semi-automatic or manual control.

Notice: New version of CrysAlisPro v39.46 released in April 2018

We welcome user feedback and CrysAlisPro is frequently updated with new features inspired by users. In this way, our software is continually improving so that your diffractometer always provides data of the highest quality. Visit our forum for more information.

How to get CrysAlisPro
The software is freely available for users of Rigaku Oxford Diffraction and can be downloaded from our forum. Please register at Any queries related to the software may be answered on the forum.

Automatic Crystal Screening

At the heart of CrysAlisPro are the automatic crystal screening, data collection and strategy modules. For a typical crystal, a short pre-experiment lasting less than five minutes is recorded to evaluate crystal quality. From the first frame, CrysAlisPro automatically evaluates the crystal quality and provides the user with information regarding the unit cell, intensity estimation by resolution range and suggested frame exposure times for the full data collection. Additionally, CellCheckCSD (developed with the Cambridge Crystallographic Data Center) helps prevent the collection of known structures by automatically screening the CSD for unit cell matches.


Fastest Strategy Software

CrysAlisPro‘s sophisticated strategy software automatically calculates the optimal conditions for fast, high quality, complete data collection. All strategies are rapidly calculated based on the specific crystal orientation and unit cell dimensions. The user has complete control to optimize the strategy for a wide variety of targets including multiplicity, time and resolution. Strategy calculations are extremely fast and efficient, allowing the user to quickly adapt the data collection conditions for a variety of experiment types, with both Mo and Cu radiation.
Automatic and Concurrent Data Reduction

Data reduction and processing initialize automatically with the start of data collection and employ intelligent routines which tune the parameters to give the best data quality. Processed data are always available and accompanied by real time on-screen feedback of data quality and completeness. CrysAlisPro is programmed for multi-core data processing, meaning rapid results even from the largest data sets.

A Full Complement of Crystallographic Tools

In addition to automatic routines, CrysAlisPro includes a very comprehensive and highly effective range of tools and functions for dealing with non-standard and problematic X-ray diffraction data. These tools are available through the GUI or from a command line interface, and include:

  • Advanced unit cell finding
  • EwaldPro — Reciprocal lattice viewer
  • Twin data processing
  • Incommensurate data processing
  • Automated high pressure data collection and reduction
  • Face-indexing — with automated shape generation
  • Multi-temperature experiments
  • Powder data collection and processing
  • Precession image generation
  • Axial photos

Software Compatibility
Use CrysAlisPro to import and process frames from synchrotrons and other detector formats. Data is automatically output in HKLF format and quick links interface directly to Olex2, CRYSTALS, WinGX and Jana (for use of SHELX, SIR, Superflip and other programs, where installed).


AutoChem is the ultimate productivity tool for chemical crystallography, offering fast, fully automatic structure solution and refinement during data collection. 
Developed exclusively for Rigaku Oxford Diffraction by the authors of Olex2 (Durham University and OlexSys), AutoChem builds upon the success of our original AutoChem software. Seamlessly integrated as an optional plug-in for CrysAlisPro, AutoChem offers an advanced approach for automatic structure determination, with an even higher rate of success.

AutoChem can work with or without a chemical formula, intelligently using multiple solution programs and typically requiring only partial completeness to solve routine structures. In more difficult cases, AutoChem will make attempts in multiple space groups. A number of refinement options are available; atoms are modeled anisotropically where the data supports it and hydrogen atoms are included in calculated geometric positions. The structure is then re-labeled and refined to completion before a final structure report is generated.


CrysAlisPro displays the structure and key refinement parameters, and provides a link to a full Rigaku Oxford Diffraction’s edition of Olex2 — complete with AutoChem plug-in — which can be launched at any time. Here the user can review all aspects of the refinement, step back to any stage of the process and apply changes as necessary.

Videos for the XtaLAB mini II X-ray diffractometer

Below are links to videos about the XtaLAB mini II single crystal X-ray diffractometer. The videos show the technology behind this benchtop single crystal X-ray diffractometer; how it is used in a University setting for teaching X-ray crystallography, and finally a guide to mounting your sample onto the X-ray diffractometer.

XtaLAB mini™ single crystal X-ray diffractometer applications

Fast complete structure



Sample 4-aminobenzenesulfonamide
Formula C6H8N2O2S
Formula weight 172.20
Sample size 0.40 × 0.32 × 0.28 mm
Space group P21/c
Lattice constants a = 8.9963(6) Å
b = 9.013(5) Å
c = 10.053(6) Å
β = 111.529(8)°
V = 757.9(8) ų

Z = 4
Measurement time 2 hours 7 minutes
Rmerge 2.45 %
R1 3.21 %
For many applications: inorganic and organic materials



Sample Potassium tetrachloroplatinate (II)
Formula K2PtCl4
Formula weight 610.19
Sample size 0.18 × 0.18 × 0.18 mm
Space group P4/mmm
Lattice constants a = 6.995(10) Å
c = 4.131(6) Å
V = 202.1(5) ų
Z = 16

Measurement time

1 hour 27 minutes


2.91 %
R1 1.731 %
Suitable for short and long unit cell axes



Sample Raffinose
Formula C18H32O16·5H2O
Formula weight 594.52
Sample size 0.25 × 0.13 × 0.12 mm
Space group P212121
Lattice constants a = 8.99700(6) Å
b = 12.3300(9) Å
c = 23.8100(17) Å
V = 2633.4(3) ų
Z = 4
Measurement time 5 hours 30 minutes
Rmerge 6.74 %
R1 4.29 %

XtaLAB mini single crystal X-ray diffractometer publications

  1. Venkatesha R. Hathwar, Tejender S. Thakur, Tayur N. Guru Row, and Gautam R. Desiraju. "Transferability of Multipole Charge Density Parameters for Supramolecular Synthons: A New Tool for Quantitative Crystal Engineering." 2011, Cryst. Growth Des., 11 (2), pp. 616–623.
  2. Ritesh Dubey and Gautam R. Desiraju. Exploring the Crystal Structure Landscape with a Heterosynthon Module: Fluorobenzoic Acid:1,2-Bis(4-pyridyl)ethylene 2:1 Cocrystals." 2015,
    Cryst. Growth Des., 15(1), pp. 489–496.
  3. Arijit Mukherjee and Gautam R. Desiraju. "Halogen Bonding and Structural Modularity in 2,3,4- and 3,4,5-Trichlorophenol." 2011, Cryst. Growth Des., 11(9), pp. 3735–3739.
  4. Srinu Tothadi, Palash Sanphui, and Gautam R. Desiraju. "Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds." 2014, Cryst. Growth Des., 14(10), pp. 5293–5302.
  5. Srinu Tothadi, Sumy Joseph, and Gautam R. Desiraju. "Synthon Modularity in Cocrystals of 4-Bromobenzamide with n-Alkanedicarboxylic Acids: Type I and Type II Halogen···Halogen Interactions." 2013, Cryst. Growth Des., 13(7), pp. 3242–3254.
  6. Srinu Tothadi and Gautam R. Desiraju. "Synthon Modularity in 4-Hydroxybenzamide–Dicarboxylic Acid Cocrystals." 2012, Cryst. Growth Des., 12(12), pp. 6188–6198.
  7. Srinu Tothadi and Gautam R. Desiraju. "Designing ternary cocrystals with hydrogen bonds and halogen bonds." 2013, Chem. Commun., 49, pp. 7791-7793.
  8. Arijit Mukherjee and Gautam R. Desiraju. "Combinatorial Exploration of the Structural Landscape of Acid–Pyridine Cocrystals." 2014, Cryst. Growth Des., 14(3), pp. 1375–1385.
  9. Yutaka Ishida and Hiroyuki Kawaguchi. "Methylene-Linked Anilide—Bis(aryloxide) Ligands: Lithium, Sodium, Potassium, Chromium(III), and Vanadium(III) Ligation." 2014, Inorg. Chem., 53(13), pp. 6775–6787.
  10. Yutaka Ishida and Hiroyuki Kawaguchi. Nitrogen Atom Transfer from a Dinitrogen-Derived Vanadium Nitride Complex to Carbon Monoxide and Isocyanide." 2014, J. Am. Chem. Soc., 136(49), pp. 16990–16993.
  11. A. Mukherjee, K. Dixit, S. P. Sarma and G. R. Desiraju. "Aniline-phenol recognition: from solution through supramolecular synthons to cocrystals." 2014, IUCrJ, 1, pp. 228-239.
  12. A. Mukherjee and G. R. Desiraju. "Halogen bonds in some dihalogenated phenols: applications to crystal engineering." 2014, IUCrJ, 1, pp. 49-60.
  13. D. E. Janzen, A. M. Kooyman and K. A. Lange. "Crystal structures of bis[2-(di-phenylphosphinothioyl)phenyl] ether and bis{2-[diphenyl(selanylidene)phosphan-yl]phenyl} ether." 2014, Acta Cryst., E70, pp. 536-540.
  14. Eagle, C. T., Kpogo, K. K., Zink, L. C. and Smith, A. E. "Tetrakis[ -N-(2,4,6-trimethylphenyl)acetamidato]-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2012, Acta Cryst., E68, m877.
  15. Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. and Janzen, D.
    E."trans-Acetyldicarbonyl(η5-cyclopentadienyl)[tris(furan-2-yl)phosphane-κP] molybdenum(II)." 2013, Acta Cryst., E69, m475-m476.
  16. Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. ans Janzen, D. E.
    "trans-Acetyldicarbonyl(η5-cyclopentadienyl)(methyldiphenylphosphane) molybdenum(II)." 2012, Acta Cryst., E68, m1158-m1159.
  17. Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. and Janzen, D. E. "Crystal structures of
    trans-acetyldicarbonyl(η5-cyclopentadienyl)(dimethylphenylphosphane)molybdenum(II) and
    trans-acetyl-dicarbonyl(η5-cyclopentadienyl)(ethyldiphenylphosphane)molybdenum(II)." 2014, Acta Cryst., E70, 216-220.
  18. Sanphui, P. and Rajput, L. "Tuning solubility and stability of hydrochlorothiazide co-crystals." 2014, Acta Cryst., B70, 81-90.
  19. Eagle, C. T., Quarshie, F., Ketron, M. E. and Atem-Tambe, N. "cis-Tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2013, Acta Cryst., E69, m329.
  20. Janzen, D. E., Crepeau, L. E., Hageseth, B. D. and Wollack, J. W. "Bis(2-nitrophen-yl)methane." 2014, Acta Cryst., E70, o859.
  21. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Quarshie, F. "(3-Methyl-benzonitrile-κN)tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II)(Rh-Rh)." 2013, Acta Cryst., E69, m639.
  22. Eagle, C. T., Quarshie, F. and Cook, K. M. "(3-Methylbenzonitrile-1 N)-cis-tetrakis(μ-N-phenylacetamidato)-1:2κ4N:O;1:2κ4O:N-dirhodium(II)(Rh-Rh)." 2014, Acta Cryst., E70, m304.
  23. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Cook, K. M. "Crystal structure of
    tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(2-methylbenzonitrile-κN)rhodium(II)](Rh-Rh)." 2014, Acta Cryst., E70, m333-m334.
  24. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "1-Phenylpiperazine-1,4-diium tetrachloridocobalt(II)." 2014, Acta Cryst., E70, m139.
  25. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Trichlorido(1-ethyl-piperazin-1-ium)cobalt(II)." 2014, Acta Cryst., E70, m166.
  26. Mathlouthi, M., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Crystal structure of 2,5-dimethylanilinium hydrogen maleate." 2014, Acta Cryst., E70, o1183-o1184.
  27. Tothadi, S. and Desiraju, G. R. "4-Hydroxybenzamide 1,4-dioxane hemisolvate." 2012, Acta Cryst., E68, o2661.
  28. Okoro, C. O., Siddiquee, T. and Fadeyi, O. O. "5,7-Dibromo-3-trifluoromethyl-3,4-dihydroacridin-1(2H)-one." 2011, Acta Cryst., E67, o2052.
  29. Rahman, M. A., Karim, M., Arifuzzaman, M., Siddiquee, T. & Daniels, L. M. "2,9-Bis(5-sulfanylidene-4,5-dihydro-1,3,4-oxadiazol-2-yl)-1,10-phenanthroline dimethyl sulfoxide disolvate." 2014, Acta Cryst., E70, o321-o322.
  30. Mapp, L. and Coles, S. "Delivering practical crystallography experience to undergraduate students." 2014, Acta Cryst., A70, C1276.
  31. Frederick P. Malan, Eric Singleton and Reinout Meijboom. "Crystal structure of bis(phenylethynyl)tetrakis(dimethylphenylphosphine)ruthenium(II), C48H54P4Ru." 2014, Z. Kristallogr., NCS 229, pp. 255-257.
  32. Srinu Tothadi and Gautam R. Desiraju. "Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering." Phil. Trans. R. Soc. A, 2012, 370, pp. 2900–2915.
  33. Daron E. Janzen and Kent R. Mann. "Red and Orange Polymorphs of [Pt(terpy)Cl]Cl·2H2O." 2013, J. Chem. Crystallogr., 43(6), pp. 292-298.
  34. Sunil Varughese, Shashi Bhushan Sinha and Gautam R. Desiraju. "Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design."
    2011, Science China Chemistry, 54(12), pp. 1909-1919.
  35. Aya Sakon and Hidehiro Uekusa. "Supramolecular Structure of 5-Hydroxyisophtalic Acid-Ethanol 2:1 Solvate." 2012, X-ray Structure Analysis Online, 28, pp. 35-36.
  36. Srinu Tothadi, Balakrishna R. Bhogala, Asha R. Gorantla, Tejender S. Thakur, Ram K. R. Jetti and Gautam R. Desiraju. "Triclabendazole: An Intriguing Case of Co-existence of Conformational and Tautomeric Polymorphism." 2012, Chemistry – An Asian Journal, 7(2), pp. 330–342.
  37. Abdur R Miah, Jagodish C Sarker, Subas Rajbangshi, Shariff E Kabir, Shishir Ghosh and Tasneem A Siddiquee. "Synthesis and characterization of tungsten carbonyl complexes containing thioamides." 2012, Ind. J. Chem., 53A, pp. 274-280.
  38. Jun Zhao, Dong-Sheng Li, Ya-Pan Wu, Wen-Wen Dong, Liang Bai and Jack Y. Lu. "Structural diversity and properties of six coordination polymers derived from 1,2/1,3-phenylenedioxydiacetic acids and varied N-donor co-ligands." 2104, Inorg. Chim. Acta, 413, pp. 6-15.
  39. Tejender S. Thakur, Yasser Azim, Tothani Srinu and Gautam R. Desiraju. "N-H···O and C-H···O interaction mimicry in the 1:1 molecular complexes of 5,5’-diethylbarbituric acid with urea and acetamide." 2010, Current Science, 98(6), pp. 793-802.
  40. Daron E. Janzen and Arianna M. Kooyman. "Gold(III) Assisted C-H activation of 1,4,7-trithiacyclonone: Synthesis and Spontaneous Resolution of a Bicyclic Chiral Sulfonium Salt." 2104,
    Dalton Trans., 43, pp. 3424-3427.
  41. Malay Patra, Klaus Merz and Nils Metzler Nolte. "Planar Chiral (η6-arene)Cr(CO)3 Containing Carboxylic Acid Derivatives: Synthesis and Use in the Preparation of Organometallic Analogues of the Antibiotic Platensimycin." 2012, Dalton Trans., 41, pp. 112-117.
  42. Mohammad Arifuzzaman, Tasneem A. Siddiquee, Mohammad R. Karim, Aminul H. Mirza, Mohamad A. Ali. "Synthesis and Structure of Dimeric Copper (I) Complex from Bis[(2,2’)-dimethyl 2,2’-(1,10-phenanthroline-2,9-diyl) bis(methan-1-yl-1-ylidene)-bis(hydrazinecarbodithioate)]." 2013, Crystal Structure Theory and Applications, 2, pp. 159-166
  43. Pawel Grobelny, Arijit Mukherjee and Gautam R. Desiraju. "Polymorphs and hydrates of Etoricoxil, a selective COX-2 inhibitor." 2012, CrystEngComm, 14, pp. 5785-5794.
  44. Srinu Tothadi. "Polymorphism in cocrystals of urea:4,4′-bipyridine and salicylic acid:4,4′-bipyridine." 2014, CrystEngComm., 16, pp. 7587-7597.
  45. Arijit Mukherjee, Srinu Tothadi, Shaunak Chakraborty, Somnath Ganguly and Gautam R. Desiraju. "Synthon identification in co-crystals and polymorphs with IR spectroscopy. Primary amides as a case study." 2013, CrystEngComm., 15, pp.4640-4654.
  46. M.A. Guino-o, M. J. Folstad and D. E. Janzen "Crystal structures of 2,6-bis[(1H-1,2,4-triazol-1-yl)methyl]pyridine and 1,1-[pyridine-2,6-diylbis(methylene)]bis(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide." 2015, Acta Cryst., E71, pp. 128-132.
  47. Lalit Rajput, Palash Sanphui, and Gautam R. Desiraju. "New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals and Solubility." 2013, Cryst. Growth Des., 13(8), pp. 3681-3690.
  48. K. A. Siddiqui. "C–H···Onitrate synthon assisted molecular assembly of hydrogen bonded Ni(II) and Cu(II) complexes." 2013, J. Coord. Chem., pp. 2039-2050.
  49. Hoong-Kun Fun, Ching Kheng Quah, Prakash S. Nayak, B. Narayana and B. K. Sarojini. "N-(2-Bromophenyl)-2-(naphthalen-1-yl)acetamide." 2012, Acta Cryst. E71, o2657.
  50. Arijit Mukherjee, Pawel Grobelny, Tejender S. Thakur and Gautam R. Desiraju. "Polymorphs, Pseudopolymorphs and Co-Crystals of Orcinol: Exploring the Structural Landscape with High Throughput Crystallography." 2011, Cryst. Growth Des., 11, pp. 2637-2653.
  51. Eon S. Burkett and Tasneem A. Siddiquee. "Coordination Nature of 4-Mercaptoaniline to Sn(II) Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV) Complex." 2014, Inorganics, 2(4), pp. 652-659.
  52. Srinu Tothadi, Arijit Mukherjee and Gautam R. Desiraju. "Shape and size mimicry in the design of ternary molecular solids: Towards a robust strategy for crystal engineering." 2011,
    Chem. Commun., 47, pp. 12080-12082.
  53. Jagodish C. Sarkar, Md. Saifur Rahman, Shariff E. Kabir and Tasneem A. Siddiquee. "X-Ray crystal structure of [(μ-H)Os2(CO)4(SnPh3)2(μ-HSnPh2)(μ-dppf)] (dppf= 1,1'́-bis(diphenylphosphino)ferrocene." 2014, Journal of Bangladesh Academy of Sciences, 38(1), pp. 97-101.
  54. Akira Miura, Masanori Nagao, Takahiro Takei, Satoshi Watauchi, Isao Tanaka and Nobuhiro Kumada. "Crystal structures of LaO1-xFxBiS2(x ~ 0.23, 0.46): effect of F doping on distortion of Bi–S plane." 2014, J. Solid State Chem., 212, pp. 213-217.
  55. Daron E. Janzen and Kent R. Mann. "Heteroleptic platinum(II) isocyanide complexes: convenient synthetic access, polymorphs, and vapoluminescence." 2015, Dalton Trans., Advanced Article.
  56. Manish Kumar Mishra, Upadrasta Ramamurty and Gautam R. Desiraju. "Solid Solution Hardening of Molecular Crystals: Tautomeric Polymorphs of Omeprazole." 2015, J. Am. Chem. Soc., Advanced Article.