September 15, 2020: A team of Florida State University researchers led by Biwu Ma, a professor in the Department of Chemistry and Biochemistry has developed a new material that could be used to help preserve the world’s most exclusive whiskies. The material, which is a type of preceramic polymer-grafted silica, was recently granted European and U.S. patents.

The process for manufacturing the material involves the use of a novel technique that has been developed by the researchers. This technique is expected to lead to breakthroughs in medical imaging and other areas. It is the first time that the technique has been used to create a material that is suitable for use in the preservation of high-quality whiskies.

The material is made from a type of silica that is known for its ability to absorb water. This property makes it ideal for use in the preservation of whiskies, as it helps to prevent the development of mold and other harmful substances.

The researchers have demonstrated that the material is effective in preserving whiskies for up to 10 years. They have also shown that it is able to remove up to 90% of the water from the whiskies.

September 14, 2020: The Department of Chemistry and Biochemistry has developed a new material that could be used to create highly sensitive “vapochromic” sensors that can detect the presence of water vapor.

The material is a color-shifting crystalline substance that can be used to indicate the presence of water vapor in the air. It is expected to be useful in a variety of applications, including the monitoring of indoor air quality and the detection of leaks in industrial processes.

Researchers have demonstrated that the material is able to change its color when exposed to water vapor. This makes it an ideal candidate for use in the development of vapochromic sensors.

August 31, 2020: Better batteries are a critical enabling technology for everything from renewable energy to electric vehicles. However, they are often limited by recombination losses and the efficiency of energy storage.

Researchers have demonstrated that certain molecules previously viewed as having limited potential for use in batteries can actually be used to improve the performance of these devices. This finding is expected to lead to the creation of more efficient and longer-lasting battery technologies.

The molecules, which are known as transition metal complexes, were previously thought to be too unstable to be used in batteries. However, the researchers have shown that they are able to store and release large amounts of energy without causing recombination losses.

September 4, 2020: The study of the physical properties that confer string properties to musical instruments is an important field of research. However, it is often difficult to accurately measure these properties using traditional techniques.

Researchers have developed a new approach to expanding battery capacity by using machine learning to predict superhard materials. This method depends both on the material itself, and on the limitations of the analytical technique used to characterize it.

The researchers used machine learning methods to predict superhard materials that could be used to increase the energy density of batteries. They then tested these materials in batteries and found that they were able to store more energy than traditional materials.

August 20, 2020: Rigaku’s x-ray fluorescence (XRF) spectrometer is the perfect solution for analyzing the chemical properties of the target compound with your chemical knowledge. It offers the ability to switch anode materials easily to provide for fast data acquisition and the use of a high-resolution CCD detector. The rotating anode x-ray source and a high-resolution XRM (X-ray microscope) with the ability to deliver 3D computed tomography (CT) scans can be performed. Rigaku nano3DX is a true X-ray microscope in a single compact and portable box.


UPCOMING RIGAKU EVENTS

The powerful X-ray source covers a wide temperature and folded in half. At 80°C, it can be stretched into a bar shape at room temperature and folded in half.

Rigaku TOMO 50 is a high-performance X-ray tomography system that can provide fast and high-quality X-ray microtomograms. It is capable of generating 3D images with high resolution and contrast, even for samples with complex or non-uniform structures.

Rigaku held its first online X-ray Convention (RAXC 2020) on October 22, 9 AM & 2 PM | CDT. Panelists will discuss. Examples include size and shape measurements of metal and plastic parts, chemical compound spectral analysis, and 3D imaging of microscopic objects.

Materials Science is a fast-growing field with applications ranging from renewable energy to electronics, metals, and bones. The powerful X-ray source covers a wide temperature range and folded in half at 80°C, it can be stretched into a bar shape at room temperature and folded in half.

Rigaku’s X-ray technology has transformed workflows and maximized quality insight in their organizations. We would also like to invite you to join us on Wednesday, October 14, at 1 PM CDT for a 3D look at the structures of a crystal structure of the silica mineral quartz under shock compression and is challenging to analyze in previously unseen detail.