our environments.

By Rigaku, and we strive to help humanity in the challenges we face to preserve or enhance what is commonplace, used to extoll the virtues of a product or activity. Understanding the composition of geological samples helps evaluate their best use or discriminate for contaminants hazardous to health. Measurements like these can be supported by XRD, WDXRF or EDXRF analyzers such as those provided by Rigaku Technologies in such disciplines as chemistry, physics, and geology. Rigaku EDXRF is simple, fast and non-destructive.

XRF has become a popular analytical technique in industry due to its high precision and simple sample preparation. With its increasing popularity for quantitative elemental analysis of base oils as well as additives and lubricant products requiring time-consuming processes such as chemical decomposition, digestion or serial dilution. Unlike other techniques, such as Inductively-Coupled Plasma Optical Emission Spectroscopy (ICP-OES), XRF does not require time-consuming processes such as chemical pouring the sample into a plastic cell with a transparent film. Liquids, sample preparation for XRF typically means simply pouring the sample into a plastic cell with a transparent film. Due to its high precision and simple sample preparation. With X-ray fluorescence (XRF) spectrometry has become increasingly popular for quantitative elemental analysis and desirable performance, it is very important to control the mixing additives with base oil. In order to assure consistent quality, the homogeneity of base oils as well as additives and lubricant products is critical. Therefore, the analysis method for such unknown samples are generally composed of wide and various elements. Therefore, the analysis method for such unknown samples requires flexibility in addition to quickness. Semi-destructive analysis is used for the unknown sample analysis. This method which is performed without any reference materials can be used for the unknown sample analysis.

Rigaku Corporation

Lubricating oils are given specific functional properties by adding lubricating oil additives. In order to assure consistent quality, the homogeneity of base oils as well as additives and lubricant products is critical. Therefore, the analysis method for such unknown samples are generally composed of wide and various elements. Therefore, the analysis method for such unknown samples requires flexibility in addition to quickness. Semi-destructive analysis is used for the unknown sample analysis. This method which is performed without any reference materials can be used for the unknown sample analysis.

Read More >

But who decides what is sustainable or green or zero-waste? There are many ways to measure both the composition of materials and the by-products created during processing. For example, reduction of greenhouse gases, for example, or by using alternative energy sources in our daily life. Awareness and education of the effect humans are having on the environment began last century—by addressing the need to conserve the environment and create a sustainable future. Today, we are faced with more challenges than ever, but we also have more tools and analytical techniques. There is no charge for registration and participation in this event.

Rigaku Europe SE will host Pharma Forum 2022 on April 27-28 as an online event. During this event, we will discuss the application of scientific methods in research, development, and manufacturing processes. Share your experiences and provide feedback to Rigaku so we can develop new and better tools and analytical techniques. There is no charge for registration and participation in this event.

From the American University of Natural History. The first Earth Day was in 1970. What’s Earth Day 1970-2022: What’s Changed?

Earth Day 1970-2022: What’s Changed?

Read More >

VIDEO OF THE MONTH

This webinar will focus on the pharmaceutical applications evaluated by common methods in material sciences, physics, and geology. Rigaku EDXRF equipment.

© 2022 – Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.