台式化学晶体学系统

用于测试小分子的三维分子结构

XtaLAB mini™ II

自动小分子结构测试

理学公司推出的新型XtaLAB mini台式X射线晶体学系统,是用于自动三维化学结构测试的最新单晶X射线分析仪。 系统为在化学晶体学方面没有接受特别训练的研究人员设计了自动获得可用于论文发表的优质结果。系统可运行在标准电源下。

自助服务、使用简便的例行搜索工具

理学公司的 XtaLAB mini是台式的高速搜索化学晶体学仪器。不会降低数据质量,不会延长收集时间。提供结果一目了然。通过将从数据收集到结构分析的所有步骤(这些以往困难的X射线晶体结构测试)自动化,使获得高分辨率小分子三维晶体结构变得容易。即使是最为困难的孪晶样品和不规则样品也可以通过整套工具得到解决,专家们将会对此寄予很高的评价。

Ask for more info

Features

  • 价格合理,运行成本低
  • 仅需最小程度的培训和支持
  • 自动结构分析软件
  • 提供明确的结构信息
  • NMR(核磁共振)光谱仪的理想补足
  • 完美的自助服务部门实验室仪器
  • 理想的教学仪器
  • 可用于论文发表的优质结果
  • 无特殊基础设施要求
  • 低温喷雾装置(选购)

XtaLAB mini™ II specifications

Fully featured benchtop single crystal X-ray diffractometer

  • Robust, simple design
  • Intuitive software, ideal to support non-expert users
  • Latest technology Hybrid Photon Counting X-ray detector
  • Exceptional data quality - ready-to-publish structures exceed IUCr publication standards

Install it anywhere
  • Standard AC power required - anywhere in the world
  • Very small footprint - 560 mm (W) × 395 mm (D) × 674 mm (H) and ~ 100 kg weight
  • Extremely safe design - no possibility of accidental exposure; shutter interlock linked to cabinet door
Accessible to all
  • Auto mode allows all steps from data collection to a complete structure report from only an input chemical formula
  • Automatic intelligent space group determination
  • Complete handling of twins available
  • Numerical absorption correction available
Exceptional data quality
  • SHINE optic - comparable data quality and data collection to conventional system with 1/4 of the power use (600 W)
  • New HPC detector - newly developed for XtaLAB mini II
  • Low temperature device compatible and available

XtaLAB mini™ accessories

Oxford Cryostream 800

Whether 800 series, Plus or Compact, all Cryostream systems have the same unique mode of operation, allowing the systems to offer fast cool-down, high stability, low LN2 consumption and superior laminar flow. The new quiet pump is responsible for the gas flow from an unpressurised Dewar, through a flexible vacuum insulated transfer line, into the Cryostream coldhead. Once inside the coldhead, the liquid nitrogen passes through a heater, which evaporates most of the liquid into gas. This gas then flows outward along one path of the heat exchanger, through the temperature controller, to arrive at the pump at approximately 10 Kelvin below room temperature.

The flow rate of the gas from the pump is regulated by a variable flow controller. This gas flows back into the Cryostream coldhead where it is re-cooled along the second path of the heat exchanger.The gas temperature is regulated by a heater and sensor before entering the nozzle of the Cryostream, flowing along the isothermal nozzle and out over the sample.The temperature indicated on the Controller is a mapped temperature for the crystal position.

The default Cryostream gas flow rate is 5 L /minute, which equates to roughly 0.6 L of liquid nitrogen per hour.This means that a 60 litre Dewar will last for up to 4 days so can easily be run over a weekend without refilling. Turbo mode gives an increased flow rate of 10 L/minute if required.

Cryostream features
  • Best available temperature range of 80- 400 Kelvin as standard or 80-500 Kelvin in Plus model
  • Oxford Cryosystems superior laminar gas flow system; means significantly less icing than alternative systems
  • Proven stability in excess of 0.1 Kelvin
  • On-line and local data logging, monitoring and control
  • Fast cool-down to 100 Kelvin in just 20 minutes
  • Low & constant LN2 consumption means a 60 litre dewar can last up to 4 days*
  • Highly accurate mapping of temperature at crystal position
  • *At temperatures greater than 90 Kelvin, LN2 consumption may increase to 1.2 L/hour

CrysAlisPro v40

Now with full 64 bit compatibility!

Rigaku Oxford Diffraction single crystal X-ray diffractometers come complete with CrysAlisPro, our user-inspired data collection and data processing software for small molecule and protein crystallography. Designed around an easy-to-use graphical user interface, CrysAlisPro can be operated under fully automatic, semi-automatic or manual control.

CrysAlisPro logo

The latest release, CrysAlisPro v.40, is now fully 64 bit compatible and ready for the future. As modern diffractometers increase in performance and speed, your experiments generate bigger and bigger images and datasets. Additionally, supporting large detectors with very high pixel counts, such as those more commonly found at synchrotrons, requires large amounts of memory. Moving to 64 bit gives applications access to more memory, enabling the handling of these very large image sizes and data sets.

Expanded support for older Rigaku instrumentation and third party hardware is also in this release.

See below for other new software features that have recently been introduced.

How to get CrysAlisPro

The software is freely available for users of Rigaku Oxford Diffraction single crystal X-ray instruments and can be downloaded from our forum. Please register at http://www.rigakuxrayforum.com. Any queries related to the software may be answered on the forum.

CrysAlisPro: Seamless from start to finish

CrysAlisPro combines automated crystal screening, the fastest and most accurate strategy software available, concurrent data reduction and automatic small molecule structure solution. Visual feedback is provided for each step with clear, color-coded guidance so that both novices and experts can collect high-quality data in the shortest time possible.

CrysAlisPro is built on a command line interface and the GUI retains full manual control options for those that want them. It is your choice how to analyse your data.

CrysAlisPro processes data using sophisticated algorithms to provide the highest quality data. As technology or approaches change, our software team incorporates these to further advance data analysis and processing.

CrysAlisPro screen
Processing of challenging and non-standard data collections

CrysAlisPro Ewald3D

CrysAlisPro contains a comprehensive and highly effective range of tools for tackling a wide range of samples from easy to challenging, and non-standard crystal samples. For example, EwaldExplorer and Ewald 3D (NEW!) easily identify effects, problems or artifacts in difficult or problematic datasets.

Ewald3D allows visualization of measured reciprocal space in 3-dimensions and in an undistorted way. Identifying diffuse scatter, modulation, subtle twinning, or incorrect instrument models is quick and easy with this brand new feature.

Supporting a range of crystallographic setups and applications

In addition to standard data collection routines, CrysAlisPro contains tools for working with non-standard experimental setups and sample types, including:

  • High pressure data collections
  • Variable temperature and multi-wavelength experiments
  • Powder experiments (data collection and processing)
  • Automatic screening or full data collections of several in situ protein crystals
  • Highly absorbing samples
  • Up to 8-fold twinned samples
  • Charge density measurements
  • Absolute structure determination
Software Compatibility

Exporting frames or data from CrysAlisPro into suitable alternative formats such as mosFLM, XDS, Denzo (HKL 2000) or another Esperanto format is easily achieved. Use CrysAlisPro’s data collection strategy to achieve the best data coverage in the quickest possible time and then automatically output into HKLF format for small molecule datasets or into the MTZ format for protein datasets.

CrysAlisPro is used by numerous research groups to process their synchrotron data. Our software is capable of importing data from several different detector types; known or unknown.


AutoChem

AutoChem is the ultimate productivity tool for small molecule chemists, offering fast, fully automatic structure solution and refinement during data collection. Developed in collaboration with OlexSys Ltd (Durham University, UK), AutoChem works in conjunction with Olex2 where more advanced structure solution and refinement functionality exists. AutoChem is seamlessly integrated within CrysAlisPro, and forms an integral part of our ‘What is this?’ feature.

The ‘What is this?’ feature gives you structures in seconds and ensures you are not wasting time collecting full datasets on known samples or starting materials. It is an alternative pre-experiment option, which is used to plan your full data collections.

CrysAlisPro flow

Videos for the XtaLAB mini II X-ray diffractometer

Below are links to videos about the XtaLAB mini II single crystal X-ray diffractometer. The videos show the technology behind this benchtop single crystal X-ray diffractometer; how it is used in a University setting for teaching X-ray crystallography, and finally a guide to mounting your sample onto the X-ray diffractometer.

XtaLAB mini™ single crystal X-ray diffractometer applications

Fast complete structure

Molecule

 

Sample 4-aminobenzenesulfonamide
Formula C6H8N2O2S
Formula weight 172.20
Sample size 0.40 × 0.32 × 0.28 mm
Space group P21/c
Lattice constants a = 8.9963(6) Å
b = 9.013(5) Å
c = 10.053(6) Å
β = 111.529(8)°
V = 757.9(8) ų

Z = 4
Measurement time 2 hours 7 minutes
Rmerge 2.45 %
R1 3.21 %
For many applications: inorganic and organic materials

Molecule

 

Sample Potassium tetrachloroplatinate (II)
Formula K2PtCl4
Formula weight 610.19
Sample size 0.18 × 0.18 × 0.18 mm
Space group P4/mmm
Lattice constants a = 6.995(10) Å
c = 4.131(6) Å
V = 202.1(5) ų
Z = 16

Measurement time

1 hour 27 minutes

Rmerge

2.91 %
R1 1.731 %
Suitable for short and long unit cell axes

Molecule

 

Sample Raffinose
Formula C18H32O16·5H2O
Formula weight 594.52
Sample size 0.25 × 0.13 × 0.12 mm
Space group P212121
Lattice constants a = 8.99700(6) Å
b = 12.3300(9) Å
c = 23.8100(17) Å
V = 2633.4(3) ų
Z = 4
Measurement time 5 hours 30 minutes
Rmerge 6.74 %
R1 4.29 %

XtaLAB mini single crystal X-ray diffractometer publications

  1. Venkatesha R. Hathwar, Tejender S. Thakur, Tayur N. Guru Row, and Gautam R. Desiraju. "Transferability of Multipole Charge Density Parameters for Supramolecular Synthons: A New Tool for Quantitative Crystal Engineering." 2011, Cryst. Growth Des., 11 (2), pp. 616–623.
  2. Ritesh Dubey and Gautam R. Desiraju. Exploring the Crystal Structure Landscape with a Heterosynthon Module: Fluorobenzoic Acid:1,2-Bis(4-pyridyl)ethylene 2:1 Cocrystals." 2015,
    Cryst. Growth Des., 15(1), pp. 489–496.
  3. Arijit Mukherjee and Gautam R. Desiraju. "Halogen Bonding and Structural Modularity in 2,3,4- and 3,4,5-Trichlorophenol." 2011, Cryst. Growth Des., 11(9), pp. 3735–3739.
  4. Srinu Tothadi, Palash Sanphui, and Gautam R. Desiraju. "Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds." 2014, Cryst. Growth Des., 14(10), pp. 5293–5302.
  5. Srinu Tothadi, Sumy Joseph, and Gautam R. Desiraju. "Synthon Modularity in Cocrystals of 4-Bromobenzamide with n-Alkanedicarboxylic Acids: Type I and Type II Halogen···Halogen Interactions." 2013, Cryst. Growth Des., 13(7), pp. 3242–3254.
  6. Srinu Tothadi and Gautam R. Desiraju. "Synthon Modularity in 4-Hydroxybenzamide–Dicarboxylic Acid Cocrystals." 2012, Cryst. Growth Des., 12(12), pp. 6188–6198.
  7. Srinu Tothadi and Gautam R. Desiraju. "Designing ternary cocrystals with hydrogen bonds and halogen bonds." 2013, Chem. Commun., 49, pp. 7791-7793.
  8. Arijit Mukherjee and Gautam R. Desiraju. "Combinatorial Exploration of the Structural Landscape of Acid–Pyridine Cocrystals." 2014, Cryst. Growth Des., 14(3), pp. 1375–1385.
  9. Yutaka Ishida and Hiroyuki Kawaguchi. "Methylene-Linked Anilide—Bis(aryloxide) Ligands: Lithium, Sodium, Potassium, Chromium(III), and Vanadium(III) Ligation." 2014, Inorg. Chem., 53(13), pp. 6775–6787.
  10. Yutaka Ishida and Hiroyuki Kawaguchi. Nitrogen Atom Transfer from a Dinitrogen-Derived Vanadium Nitride Complex to Carbon Monoxide and Isocyanide." 2014, J. Am. Chem. Soc., 136(49), pp. 16990–16993.
  11. A. Mukherjee, K. Dixit, S. P. Sarma and G. R. Desiraju. "Aniline-phenol recognition: from solution through supramolecular synthons to cocrystals." 2014, IUCrJ, 1, pp. 228-239.
  12. A. Mukherjee and G. R. Desiraju. "Halogen bonds in some dihalogenated phenols: applications to crystal engineering." 2014, IUCrJ, 1, pp. 49-60.
  13. D. E. Janzen, A. M. Kooyman and K. A. Lange. "Crystal structures of bis[2-(di-phenylphosphinothioyl)phenyl] ether and bis{2-[diphenyl(selanylidene)phosphan-yl]phenyl} ether." 2014, Acta Cryst., E70, pp. 536-540.
  14. Eagle, C. T., Kpogo, K. K., Zink, L. C. and Smith, A. E. "Tetrakis[ -N-(2,4,6-trimethylphenyl)acetamidato]-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2012, Acta Cryst., E68, m877.
  15. Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. and Janzen, D.
    E."trans-Acetyldicarbonyl(η5-cyclopentadienyl)[tris(furan-2-yl)phosphane-κP] molybdenum(II)." 2013, Acta Cryst., E69, m475-m476.
  16. Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. ans Janzen, D. E.
    "trans-Acetyldicarbonyl(η5-cyclopentadienyl)(methyldiphenylphosphane) molybdenum(II)." 2012, Acta Cryst., E68, m1158-m1159.
  17. Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. and Janzen, D. E. "Crystal structures of
    trans-acetyldicarbonyl(η5-cyclopentadienyl)(dimethylphenylphosphane)molybdenum(II) and
    trans-acetyl-dicarbonyl(η5-cyclopentadienyl)(ethyldiphenylphosphane)molybdenum(II)." 2014, Acta Cryst., E70, 216-220.
  18. Sanphui, P. and Rajput, L. "Tuning solubility and stability of hydrochlorothiazide co-crystals." 2014, Acta Cryst., B70, 81-90.
  19. Eagle, C. T., Quarshie, F., Ketron, M. E. and Atem-Tambe, N. "cis-Tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(benzonitrile-κN)rhodium(II)](Rh-Rh)." 2013, Acta Cryst., E69, m329.
  20. Janzen, D. E., Crepeau, L. E., Hageseth, B. D. and Wollack, J. W. "Bis(2-nitrophen-yl)methane." 2014, Acta Cryst., E70, o859.
  21. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Quarshie, F. "(3-Methyl-benzonitrile-κN)tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II)(Rh-Rh)." 2013, Acta Cryst., E69, m639.
  22. Eagle, C. T., Quarshie, F. and Cook, K. M. "(3-Methylbenzonitrile-1 N)-cis-tetrakis(μ-N-phenylacetamidato)-1:2κ4N:O;1:2κ4O:N-dirhodium(II)(Rh-Rh)." 2014, Acta Cryst., E70, m304.
  23. Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. and Cook, K. M. "Crystal structure of
    tetrakis(μ-N-phenylacetamidato)-κ4N:O;κ4O:N-bis[(2-methylbenzonitrile-κN)rhodium(II)](Rh-Rh)." 2014, Acta Cryst., E70, m333-m334.
  24. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "1-Phenylpiperazine-1,4-diium tetrachloridocobalt(II)." 2014, Acta Cryst., E70, m139.
  25. Dhieb, A. C., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Trichlorido(1-ethyl-piperazin-1-ium)cobalt(II)." 2014, Acta Cryst., E70, m166.
  26. Mathlouthi, M., Janzen, D. E., Rzaigui, M. and Smirani Sta, W. "Crystal structure of 2,5-dimethylanilinium hydrogen maleate." 2014, Acta Cryst., E70, o1183-o1184.
  27. Tothadi, S. and Desiraju, G. R. "4-Hydroxybenzamide 1,4-dioxane hemisolvate." 2012, Acta Cryst., E68, o2661.
  28. Okoro, C. O., Siddiquee, T. and Fadeyi, O. O. "5,7-Dibromo-3-trifluoromethyl-3,4-dihydroacridin-1(2H)-one." 2011, Acta Cryst., E67, o2052.
  29. Rahman, M. A., Karim, M., Arifuzzaman, M., Siddiquee, T. & Daniels, L. M. "2,9-Bis(5-sulfanylidene-4,5-dihydro-1,3,4-oxadiazol-2-yl)-1,10-phenanthroline dimethyl sulfoxide disolvate." 2014, Acta Cryst., E70, o321-o322.
  30. Mapp, L. and Coles, S. "Delivering practical crystallography experience to undergraduate students." 2014, Acta Cryst., A70, C1276.
  31. Frederick P. Malan, Eric Singleton and Reinout Meijboom. "Crystal structure of bis(phenylethynyl)tetrakis(dimethylphenylphosphine)ruthenium(II), C48H54P4Ru." 2014, Z. Kristallogr., NCS 229, pp. 255-257.
  32. Srinu Tothadi and Gautam R. Desiraju. "Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering." Phil. Trans. R. Soc. A, 2012, 370, pp. 2900–2915.
  33. Daron E. Janzen and Kent R. Mann. "Red and Orange Polymorphs of [Pt(terpy)Cl]Cl·2H2O." 2013, J. Chem. Crystallogr., 43(6), pp. 292-298.
  34. Sunil Varughese, Shashi Bhushan Sinha and Gautam R. Desiraju. "Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design."
    2011, Science China Chemistry, 54(12), pp. 1909-1919.
  35. Aya Sakon and Hidehiro Uekusa. "Supramolecular Structure of 5-Hydroxyisophtalic Acid-Ethanol 2:1 Solvate." 2012, X-ray Structure Analysis Online, 28, pp. 35-36.
  36. Srinu Tothadi, Balakrishna R. Bhogala, Asha R. Gorantla, Tejender S. Thakur, Ram K. R. Jetti and Gautam R. Desiraju. "Triclabendazole: An Intriguing Case of Co-existence of Conformational and Tautomeric Polymorphism." 2012, Chemistry – An Asian Journal, 7(2), pp. 330–342.
  37. Abdur R Miah, Jagodish C Sarker, Subas Rajbangshi, Shariff E Kabir, Shishir Ghosh and Tasneem A Siddiquee. "Synthesis and characterization of tungsten carbonyl complexes containing thioamides." 2012, Ind. J. Chem., 53A, pp. 274-280.
  38. Jun Zhao, Dong-Sheng Li, Ya-Pan Wu, Wen-Wen Dong, Liang Bai and Jack Y. Lu. "Structural diversity and properties of six coordination polymers derived from 1,2/1,3-phenylenedioxydiacetic acids and varied N-donor co-ligands." 2104, Inorg. Chim. Acta, 413, pp. 6-15.
  39. Tejender S. Thakur, Yasser Azim, Tothani Srinu and Gautam R. Desiraju. "N-H···O and C-H···O interaction mimicry in the 1:1 molecular complexes of 5,5’-diethylbarbituric acid with urea and acetamide." 2010, Current Science, 98(6), pp. 793-802.
  40. Daron E. Janzen and Arianna M. Kooyman. "Gold(III) Assisted C-H activation of 1,4,7-trithiacyclonone: Synthesis and Spontaneous Resolution of a Bicyclic Chiral Sulfonium Salt." 2104,
    Dalton Trans., 43, pp. 3424-3427.
  41. Malay Patra, Klaus Merz and Nils Metzler Nolte. "Planar Chiral (η6-arene)Cr(CO)3 Containing Carboxylic Acid Derivatives: Synthesis and Use in the Preparation of Organometallic Analogues of the Antibiotic Platensimycin." 2012, Dalton Trans., 41, pp. 112-117.
  42. Mohammad Arifuzzaman, Tasneem A. Siddiquee, Mohammad R. Karim, Aminul H. Mirza, Mohamad A. Ali. "Synthesis and Structure of Dimeric Copper (I) Complex from Bis[(2,2’)-dimethyl 2,2’-(1,10-phenanthroline-2,9-diyl) bis(methan-1-yl-1-ylidene)-bis(hydrazinecarbodithioate)]." 2013, Crystal Structure Theory and Applications, 2, pp. 159-166
  43. Pawel Grobelny, Arijit Mukherjee and Gautam R. Desiraju. "Polymorphs and hydrates of Etoricoxil, a selective COX-2 inhibitor." 2012, CrystEngComm, 14, pp. 5785-5794.
  44. Srinu Tothadi. "Polymorphism in cocrystals of urea:4,4′-bipyridine and salicylic acid:4,4′-bipyridine." 2014, CrystEngComm., 16, pp. 7587-7597.
  45. Arijit Mukherjee, Srinu Tothadi, Shaunak Chakraborty, Somnath Ganguly and Gautam R. Desiraju. "Synthon identification in co-crystals and polymorphs with IR spectroscopy. Primary amides as a case study." 2013, CrystEngComm., 15, pp.4640-4654.
  46. M.A. Guino-o, M. J. Folstad and D. E. Janzen "Crystal structures of 2,6-bis[(1H-1,2,4-triazol-1-yl)methyl]pyridine and 1,1-[pyridine-2,6-diylbis(methylene)]bis(4-methyl-1H-1,2,4-triazol-4-ium) iodide triiodide." 2015, Acta Cryst., E71, pp. 128-132.
  47. Lalit Rajput, Palash Sanphui, and Gautam R. Desiraju. "New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals and Solubility." 2013, Cryst. Growth Des., 13(8), pp. 3681-3690.
  48. K. A. Siddiqui. "C–H···Onitrate synthon assisted molecular assembly of hydrogen bonded Ni(II) and Cu(II) complexes." 2013, J. Coord. Chem., pp. 2039-2050.
  49. Hoong-Kun Fun, Ching Kheng Quah, Prakash S. Nayak, B. Narayana and B. K. Sarojini. "N-(2-Bromophenyl)-2-(naphthalen-1-yl)acetamide." 2012, Acta Cryst. E71, o2657.
  50. Arijit Mukherjee, Pawel Grobelny, Tejender S. Thakur and Gautam R. Desiraju. "Polymorphs, Pseudopolymorphs and Co-Crystals of Orcinol: Exploring the Structural Landscape with High Throughput Crystallography." 2011, Cryst. Growth Des., 11, pp. 2637-2653.
  51. Eon S. Burkett and Tasneem A. Siddiquee. "Coordination Nature of 4-Mercaptoaniline to Sn(II) Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV) Complex." 2014, Inorganics, 2(4), pp. 652-659.
  52. Srinu Tothadi, Arijit Mukherjee and Gautam R. Desiraju. "Shape and size mimicry in the design of ternary molecular solids: Towards a robust strategy for crystal engineering." 2011,
    Chem. Commun., 47, pp. 12080-12082.
  53. Jagodish C. Sarkar, Md. Saifur Rahman, Shariff E. Kabir and Tasneem A. Siddiquee. "X-Ray crystal structure of [(μ-H)Os2(CO)4(SnPh3)2(μ-HSnPh2)(μ-dppf)] (dppf= 1,1'́-bis(diphenylphosphino)ferrocene." 2014, Journal of Bangladesh Academy of Sciences, 38(1), pp. 97-101.
  54. Akira Miura, Masanori Nagao, Takahiro Takei, Satoshi Watauchi, Isao Tanaka and Nobuhiro Kumada. "Crystal structures of LaO1-xFxBiS2(x ~ 0.23, 0.46): effect of F doping on distortion of Bi–S plane." 2014, J. Solid State Chem., 212, pp. 213-217.
  55. Daron E. Janzen and Kent R. Mann. "Heteroleptic platinum(II) isocyanide complexes: convenient synthetic access, polymorphs, and vapoluminescence." 2015, Dalton Trans., Advanced Article.
  56. Manish Kumar Mishra, Upadrasta Ramamurty and Gautam R. Desiraju. "Solid Solution Hardening of Molecular Crystals: Tautomeric Polymorphs of Omeprazole." 2015, J. Am. Chem. Soc., Advanced Article.


    产品(s):

    (按住Ctrl键可多选)

    姓名:
    工作单位:
    电子邮件:
    联系电话: 分机号码:
    地址:
    城市:
    省/区:
    邮政编码:
    国家:
    备注(禁止输入链接URL):


    XtaLAB mini™ II

    自动小分子结构测试

    理学公司推出的新型XtaLAB mini台式X射线晶体学系统,是用于自动三维化学结构测试的最新单晶X射线分析仪。 系统为在化学晶体学方面没有接受特别训练的研究人员设计了自动获得可用于论文发表的优质结果。系统可运行在标准电源下。

    自助服务、使用简便的例行搜索工具

    理学公司的 XtaLAB mini是台式的高速搜索化学晶体学仪器。不会降低数据质量,不会延长收集时间。提供结果一目了然。通过将从数据收集到结构分析的所有步骤(这些以往困难的X射线晶体结构测试)自动化,使获得高分辨率小分子三维晶体结构变得容易。即使是最为困难的孪晶样品和不规则样品也可以通过整套工具得到解决,专家们将会对此寄予很高的评价。

    Ask for more info

    Features

    • 价格合理,运行成本低
    • 仅需最小程度的培训和支持
    • 自动结构分析软件
    • 提供明确的结构信息
    • NMR(核磁共振)光谱仪的理想补足
    • 完美的自助服务部门实验室仪器
    • 理想的教学仪器
    • 可用于论文发表的优质结果
    • 无特殊基础设施要求
    • 低温喷雾装置(选购)

    XtaLAB mini™ 附件

    Oxford低温喷雾装置台式冷却机

    对于简单的样品冷却,台式冷却机(DTC)是最佳选择。DTC结合了一个非液体系统的便利性,还结合了传统低温喷雾设置的低成本、少维护的特点。此综合机械冷却机说明DTC可以在无需液氮的条件下产生降至170K的寒冷干燥的气流,从而消除再次重新注满杜瓦瓶的需要。使用机械冷却剂无需单独的氦气压缩机,这意味着不需要冷却水同时维护降到几乎为零。

    DTC 特点
    • 温度范围 170~300 K(开氏温度)
    • 无需液氮
    • 小型独立的系统,无需冷却水
    • 无耗材和几乎为零的维护
    • 无需用户特别注意,系统可以稳定运行几个星期

    干燥的压缩空气或者氮气通过DTC冷却,然后传递给样品。许多实验室可通过DTC直接使用通过管道传递的干燥空气或氮气供应。如果干燥空气不可用,Oxford低温喷雾装置可以提供AD51干燥空气组件,它提供:

    • 变流量达到25升/分
    • 低于-60°C露点的干燥空气

    Videos for the XtaLAB mini II X-ray diffractometer

    Below are links to videos about the XtaLAB mini II single crystal X-ray diffractometer. The videos show the technology behind this benchtop single crystal X-ray diffractometer; how it is used in a University setting for teaching X-ray crystallography, and finally a guide to mounting your sample onto the X-ray diffractometer.

    XtaLAB mini™ 应用程序

    快速完整构型

    molecule

     

    样品 4氨基磺酰胺
    分子式 C6H8N2O2S
    分子量 172.20
    样品尺寸 0.40 × 0.32 × 0.28 mm
    空间群 P21/c
    晶格常数 a = 8.9963(6) Å

    b = 9.013(5) Å

    c = 10.053(6) Å

    β = 111.529(8)°

    V = 757.9(8) ų

    Z = 4

    测试时间 2小时7分钟
    Rmerge 2.45 %
    R1 3.21 %
    对应许多应用程序:有机和无机材料

    molecule

     

    样品 氯合铂酸钾(II)
    分子式 K2PtCl4
    分子量 610.19
    样品尺寸 0.18 × 0.18 × 0.18 mm
    空间群 P4/mmm
    晶格常数 a = 6.995(10) Å

    c = 4.131(6) Å

    V = 202.1(5) ų

    Z = 16

    测试时间

    1小时27分钟

    Rmerge

    2.91 %
    R1 1.731 %
    适用于长短晶胞轴

    molecule

     

    样品 棉子糖
    分子式 C18H32O16·5H2O
    分子量 594.52
    样品尺寸 0.25 × 0.13 × 0.12 mm
    空间群 P212121
    晶格常数 a = 8.99700(6) Å

    b = 12.3300(9) Å

    c = 23.8100(17) Å

    V = 2633.4(3) ų

    Z = 4

    测试时间 5小时 30分钟
    Rmerge 6.74 %
    R1 4.29 %


    产品(s):

    (按住Ctrl键可多选)

    姓名:
    工作单位:
    电子邮件:
    联系电话: 分机号码:
    地址:
    城市:
    省/区:
    邮政编码:
    国家:
    备注(禁止输入链接URL):