Skip to main content
CT Lab GX
Features
  • Sample stationary geometry
  • Ultra-high-speed CT scan (max. 3.9 seconds/scan) and image reconstruction (15 seconds/scan)
  • Ex-vivo & in-vivo compatible
  • Easy-to-use software

Stationary sample, high-speed X-ray CT scanner

Ex-vivo, in-vivo, ultrafast in-situ compatible

Rigaku CT Lab GX series provides ultra-high-speed 3D X-ray micro-CT imaging. Samples are easy to mount, and live mode and in-situ imaging are available.

Sample stationary fast scan: The sample stationary geometry eliminates problems due to sample holding and sample drift. Samples can simply be placed on the sample bed with no glue or tape and do not move during scans. This geometry, combined with high-speed gantry rotation, enables high-speed data collection at 3.9 seconds per scan.

Live mode and in-situ imaging: Observe real-time structural changes in-situ with 2D live mode image collection or high-speed CT scans. These features are effective for observing flow and diffusion of liquid or structural change caused by environmental changes.

Specifications
Product name CT Lab GX130
Benefit Sample stationary high-speed X-ray CT scanner
Technology X-ray computed tomography
X-ray generator 39 W sealed micro-source
Tube voltage 30 to 130 kV
Tube current up to 300 μA
Target W
Detector Flat-panel
Field of view Maximum 72 x 120 mm
Resolution Maximum 4.5 μm
 
Product name CT Lab GX90
Benefit Sample stationary high-speed X-ray CT scanner
Technology X-ray computed tomography
X-ray generator 8 W sealed micro-source
Tube voltage 30 to 90 kV
Tube current up to 200 μA
Target W
Detector Flat-panel
Field of view Maximum 72 x 120 mm
Resolution Maximum 4.5 μm

Video for CTLab GX

Application Bytes


Capsule

Tablets in package 1

Tablets in package 2

Wart remover


Learn more about our products at these events

Booth number Date Location Event website
Ceramics Expo 2020 - Cleveland, OH Website

Webinars - X-ray Computed Tomography for Materials Science

X-ray CT Publications


Our first CT project

Morio ONOE, Jing Wen TSAO and Hiroaki YAMADA, Hiroshi NAKAMURA, Jin KOGURE and Hiromi KAWAMURA, M. Y. (1984). COMPUTED TOMOGRAPHY FOR MEASURING THE ANNUAL RINGS OF A LIVE TREE. Nuclear Instruments and Methods in Physics Research, 221, 213-220. https://www.sciencedirect.com/science/article/pii/0167508784902023 

  1. Tomáš Sedlačík, Takayuki Nonoyama, Honglei Guo, Ryuji Kiyama, Tasuku Nakajima, Yoshihiro Takeda, Takayuki Kurokawa, and Jian Ping Gong (2020). Preparation of Tough Double- and Triple-Network Supermacroporous Hydrogels through Repeated Cryogelation. Chem. Mater. Published online18 September 2020. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02911
  2. Nanako Sakata, Yoshihiro Takeda, Masaru Kotera, Yasuhito Suzuki, and Akikazu Matsumoto. (2020). Interfacial Structure Control and Three-Dimensional X-ray Imaging of an Epoxy Monolith Bonding System with Surface Modification. Langmuir, 36, 37, 10923–10932. https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01481
  3. Kenji Ohta , Tatsuya Wakamatsu, Manabu Kodama , Katsuyuki Kawamura, and Shuichiro Hirai. Laboratory-based x-ray computed tomography for 3D imaging of samples in a diamond anvil cell in situ at high pressures. Rev. Sci. 91, 091101. https://aip.scitation.org/doi/pdf/10.1063/5.0014486
  4. Fukami, T., Koide, T., Hisada, H., Inoue, M., Yamamoto, Y., Suzuki, T., & Tomono, K. (2016). Pharmaceutical evaluation of atorvastatin calcium tablets available on the Internet: A preliminary investigation of substandard medicines in Japan. Journal of Drug Delivery Science and Technology, 31, 35-40. https://doi.org/10.1016/j.jddst.2015.11.006 
  5. Kalasova, D., Zikmund, T., Pina, L., Takeda, Y., Horvath, M., Omote, K., & Kaiser, J. (2019). Characterization of a laboratory-based X-ray computed nanotomography system for propagation-based method of phase contrast imaging. IEEE Transactions on Instrumentation and Measurement, PP(c), 1-1. https://doi.org/10.1109/tim.2019.2910338 
  6. Kunishima, N., Takeda, Y., Hirose, R., Kalasová, D., Šalplachta, J., & Omote, K. (2020). Visualization of internal 3D structure of small live seed on germination by laboratory-based X-ray microscopy with phase contrast computed tomography. Plant Methods, 16(1), 1-10. https://doi.org/10.1186/s13007-020-0557-y 
  7. Zhang, S., Byrnes, A. P., Jankovic, J., & Neilly, J. (2019). Management, Analysis, and Simulation of Micrographs with Cloud Computing. Microscopy Today, 27(2), 26-33. https://doi.org/10.1017/s1551929519000026 
  8. Kalasová, D., Zikmund, T., Pína, L., Horváth, M., & Kaiser, J. (2016). Phase contrast tomographic imaging of polymer composites. 2020, 2020. http://ctlab.ceitec.cz/files/252/165.pdf 
  9. Kalasova, D., Pavlinakova, V., Zikmund, T., Vojtova, L., & Kaiser, J. (2018). Correlation of X-ray Computed Nanotomography and Scanning Electron Microscopy Imaging of Collagen Scaffolds. Microscopy and Microanalysis, 24(S2), 104-105. https://doi.org/10.1017/s1431927618012904 
  10. Hisada, K., Matsuoka, M., Tabata, I., Hirogaki, K., & Hori, T. (2013). Two-step radical grafting onto polypropylene fiber initiated by active species prepared through the irradiation of electron beam. Journal of Photopolymer Science and Technology, 26(2), 277-282. https://doi.org/10.2494/photopolymer.26.277 
  11. Sekita, A., Matsugaki, A., & Nakano, T. (2017). Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer. Bone, 97, 83-93. https://doi.org/10.1016/j.bone.2017.01.004 
  12. Nanako Sakata, Yoshihiro Takeda, Masaru Kotera, Yasuhito Suzuki, and A. M. (2020). Non‐destructive 3D X‐ray Imaging of Internal and Interfacial Structure of Epoxy Monolith and Strength Control by Surface Modification for the Monolith Bonding System. Langmuir. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.0c01481 
  13. Tomáš Sedlačík, Takayuki Nonoyama, Honglei Guo, Tasuku Nakajima, Yoshihiro Takeda, Takayuki Kurokawa, J. P. G. (2020). Tough Double- and Triple- Network Supermacroporous Hydrogels through Repeated Cryogelation. ACS Publications. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02911 
  14. Kakio, T., Yoshida, N., Macha, S., Moriguchi, K., Hiroshima, T., Ikeda, Y., Kimura, K. (2017). Classification and visualization of physical and chemical properties of falsified medicines with handheld Raman spectroscopy and X-Ray computed tomography. American Journal of Tropical Medicine and Hygiene, 97(3), 684-689. https://doi.org/10.4269/ajtmh.16-0971 
  15. Takase, A., McNulty, T., & Fitzgibbons, T. (2018). Foam Porosity Calculation by X-Ray Computed Tomography and Errors Caused by Insufficient Resolution. Microscopy and Microanalysis, 24(S2), 546-547. https://doi.org/10.1017/s1431927618014927 
  16. Omote, K., Iwata, T., Takeda, Y., & Ferrara, J. D. (2017). Investigation for fuel-cell structures with multi-scale X-ray analysis. Rigaku Journal, 33(2), 8-13. https://www.semanticscholar.org/paper/Investigation-for-fuel-cell-structures-with-X-ray-Omote-Iwata/78e57af8fa13252533eabb7d5e5a32ceadac9eaa?p2df 
  17. Watanabe, M., Takeda, Y., Maruyama, T., Ikeda, J., Kawai, M., & Mitsumata, T. (2019). Chain structure in a cross-linked polyurethane magnetic elastomer under a magnetic field. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20122879 
  18. Kunishima, N., Takeda, Y., Hirose, R., Kalasová, D., Šalplachta, J., & Omote, K. (2020). Visualization of internal 3D structure of small live seed on germination by laboratory-based X-ray microscopy with phase contrast computed tomography. Plant Methods, 16(1), 1-10. https://doi.org/10.1186/s13007-020-0557-y 
  19. Kalasova, D., Zikmund, T., Pina, L., Takeda, Y., Horvath, M., Omote, K., & Kaiser, J. (2020). Characterization of a laboratory-based x-ray computed nanotomography system for propagation-based method of phase contrast imaging. IEEE Transactions on Instrumentation and Measurement, 69(4), 1170-1178. https://doi.org/10.1109/TIM.2019.2910338 
  20. Akitomo, F., Sasabe, T., Yoshida, T., Naito, H., Kawamura, K., & Hirai, S. (2019). Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water. Journal of Power Sources, 431(February), 205-209. https://doi.org/10.1016/j.jpowsour.2019.04.115 
  21. Watanabe, M., Takeda, Y., Maruyama, T., Ikeda, J., Kawai, M., & Mitsumata, T. (2019). Chain structure in a cross-linked polyurethane magnetic elastomer under a magnetic field. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20122879 
  22. Kalasová, D., Zikmund, T., Mancini, L., Jaroš, J., Tesařová, M., Kaucká, M., Kaiser, J. (2016). Industrial Tomography System for Answering Biological Issues: Development of the Mouse Embryo Face. 6th Conference on Industrial Computed Tomography (ICT 2016), (iCT), 1-9. https://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id37.pdf 
  23. Tanaka, K., Yamada, T., Moriito, K., & Katayama, T. (2016). The effect of molding pressure on the mechanical properties of CFRTP using paper-type intermediate material. High Performance and Optimum Design of Structures and Materials II, 1(Hpsm), 307-315. https://doi.org/10.2495/hpsm160281 
  24. Watanabe, M., Ikeda, J., Takeda, Y., Kawai, M., & Mitsumata, T. (2018). Effect of Sonication Time on Magnetorheological Effect for Monomodal Magnetic Elastomers. Gels, 4(2), 49. https://doi.org/10.3390/gels4020049 
  25. Fukami, T., Koide, T., Hisada, H., Inoue, M., Yamamoto, Y., Suzuki, T., & Tomono, K. (2016). Pharmaceutical evaluation of atorvastatin calcium tablets available on the Internet: A preliminary investigation of substandard medicines in Japan. Journal of Drug Delivery Science and Technology, 31, 35-40. https://doi.org/10.1016/j.jddst.2015.11.006 

  1. Aung, W., Jin, Z. H., Furukawa, T., Claron, M., Boturyn, D., Sogawa, C., … Saga, T. (2013). Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ3 integrin tracer 64Cu-labeled cyclam-RAFT-c(-RGDfK-)4. Molecular Imaging, 12(6), 376-387. https://doi.org/10.2310/7290.2013.00054 
  2. Arai, Y., Yamada, A., Ninomiya, T., Kato, T., & Masuda, Y. (2005). Micro-computed tomography newly developed for in vivo small animal imaging. Oral Radiology, 21(1), 14-18. https://doi.org/10.1007/s11282-005-0024-5 
  3. Reedy, C. L. (2020). 3D Documentation and Analysis of Porosity in Deteriorated Historic Brick. Studies in Conservation, 0(0), 1-4. https://doi.org/10.1080/00393630.2020.1752426 
  4. Iikubo, M., Nishioka, T., Okura, S., Kobayashi, K., Sano, T., Katsumata, A., … Sasano, T. (2016). Influence of voxel size and scan field of view on fracture-like artifacts from gutta-percha obturated endodontically treated teeth on cone-beam computed tomography images. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 122(5), 631-637. https://doi.org/10.1016/j.oooo.2016.07.014 
  5. Benjamin M. Davis, Glen F. Rall, M. J. S. (2017). HHS Public Access. Physiology & Behavior, 176(1), 139-148. https://doi.org/10.1016/j.physbeh.2017.03.040 
  6. Bolmin, O., Wei, L., Hazel, A. M., Dunn, A. C., Wissa, A., & Alleyne, M. (2019). Latching of the click beetle (Coleoptera: Elateridae) thoracic hinge enabled by the morphology and mechanics of conformal structures. Journal of Experimental Biology, 222(12). https://doi.org/10.1242/jeb.196683 
  7. Kameoka, S., Matsumoto, K., Kai, Y., Yonehara, Y., Arai, Y., & Honda, K. (2010). Establishment of temporomandibular joint puncture technique in rats using in vivo micro-computed tomography (R-mCT®). Dentomaxillofacial Radiology, 39(7), 441-445. https://doi.org/10.1259/dmfr/37174063 

  1. Hagen, C. K., Vittoria, F. A., Morgó, O. R. I., Endrizzi, M., & Olivo, A. (2020). Cycloidal Computed Tomography. Physical Review Applied, 14(1), 1. https://doi.org/10.1103/PhysRevApplied.14.014069 
  2. Diemoz, P. C., Hagen, C. K., Endrizzi, M., Minuti, M., Bellazzini, R., Urbani, L., … Olivo, A. (2017). Single-Shot X-Ray Phase-Contrast Computed Tomography with Nonmicrofocal Laboratory Sources. Physical Review Applied, 7(4), 1-6. https://doi.org/10.1103/PhysRevApplied.7.044029 
  3. Hagen, C. K., Endrizzi, M., Diemoz, P. C., & Olivo, A. (2016). Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography. Journal of Physics D: Applied Physics, 49(25). https://doi.org/10.1088/0022-3727/49/25/255501 
  4. Zamir, A., Endrizzi, M., Hagen, C. K., Vittoria, F. A., Urbani, L., De Coppi, P., & Olivo, A. (2016). Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments. Scientific Reports, 6(August), 1-9. https://doi.org/10.1038/srep31197